300,000+ clinical trials. Find the right one.

251 active trials for Spinal Cord Injuries

Assessment of the Efficacy and Safety of EESS in Patients With Incomplete Spinal Cord Injuries

Neurological disability caused by traumatic lesions of the spinal cord is a significant challenge for medicine and society. These lesions, leading to sublesional central nervous system dysfunction, include sensorimotor, vesico-sphincter and genito-sexual disorders. To date, there is no treatment that enables spinal cord function to be restored. Preclinical studies have been able to demonstrate the recovery of locomotor activity with a combination of locomotor training, pharmacological intervention and epidural electrical stimulation of the lumbosacral spinal cord (EESS) in adult rats with spinal cord transection. An American team have recently been able to show that EESS, combined with locomotor training, caused neurological improvement in four paraplegic patients, with electromyographic muscular activation patterns similar to those observed during walking. In fact, these authors also showed an improvement, under stimulation, of the VS and GS functions, but with no detailed documentation. Starting with a conceptual and preclinical rationale, and with proof of clinical concept demonstrated in several reported cases, we propose a clinical trial with an original cross-over design to validate the hypothesis that EESS combined with training in patients with incomplete spinal cord injuries would, with a good tolerance profile, allow motor, vesico-sphincter (VS) and genito-sexual (GS) disorders to be restored in patients with incomplete spinal cord injuries.

Start: April 2021
Robotic Exoskeleton With Functional Electrical Stimulation in Acute Spinal Cord Injury

The purpose of this study is to examine the effectiveness of mobility training using the Ekso robotic exoskeleton with functional electrical stimulation (FES) in persons affected by spinal cord injury; designated AIS classification A, B, C, or D. Traditionally, a person with an American Spinal Injury Association Impairment Scale (AIS) "A" injury, walking training is not performed. Even with AIS B, C and D injuries, although walking training may be appropriate, a person may not walk as much as needed to see an improvement due to environmental and staff limitations. The Ekso is a tool to give walking training to patients. The investigators aim to see if utilizing these technologies will affect recovery; specifically in sensation and muscle activity below the level of the injury as well as the ability to walk. The Ekso is a wearable, battery- operated exoskeleton that assists with walking. The Ekso has motors at the hip and knee joints to provide assistance that may be needed with walking. All motion is initiated either through body weight shifts or the use of an external controller. The Ekso robotic exoskeleton has been approved by the Food and Drug Administration as a powered exercise device for rehabilitative purposes such as this study. Currently, the Ekso is approved for people with spinal cord injuries from T4-L5 given bilateral arm strength of 4/5. With injuries from C7-T3, individuals must have AIS classification of D with bilateral arm strength of 4/5. For this study, it is possible that Ekso GT will be used outside of the current FDA approval if the injury level is C7-T3 and the person is classified as an AIS A, B or C injury level. Functional electrical stimulation (FES) will be used in conjunction with the robotic exoskeleton. FES involves using surface electrodes placed on the skin like a sticker over key leg muscles that will be stimulated in the normal walking pattern as a person walks in the device.

Start: January 2016