300,000+ clinical trials. Find the right one.

156 active trials for Insulin Resistance

Intramyocellular Fatty Acid Trafficking in Insulin Resistance States - Effects of Intestinal Delivery of Lipids

Muscle insulin resistance is a hallmark of upper body obesity (UBO) and Type 2 diabetes (T2DM). It is unknown whether muscle free fatty acid (FFA) availability or intramyocellular fatty acid trafficking is responsible for muscle insulin resistance, although it has been shown that raising FFA with Intralipid can cause muscle insulin resistance within 4 hours. The investigators do not understand to what extent the incorporation of FFA into ceramides or diacylglycerols (DG) affect insulin signaling and muscle glucose uptake. The investigators propose to alter the profile and concentrations of FFA of healthy, non-obese adults using an overnight, intra-duodenal palm oil infusion vs. an overnight intra-duodenal Intralipid infusion (both compared to saline control). The investigators will compare the muscle FFA storage into intramyocellular triglyceride, intramyocellular fatty acid trafficking, activation of the insulin signaling pathway and glucose disposal rates, providing the first measure of how different FFA profiles alter muscle FFA trafficking and insulin action at the whole body and cellular/molecular levels. By identifying which steps in the insulin signaling pathway are most affected, the investigators will determine the site-specific effect of ceramides and/or DG on different degrees of insulin resistance. Hypothesis 1: Palm oil infusion will result in abnormal FFA trafficking into intra-myocellular ceramides and abnormal insulin signaling. Hypothesis 2: Intralipid infusion will result in abnormal FFA trafficking into intra-myocellular saturated DG and abnormal insulin signaling.

Start: December 2018
Dynamic Connectivity Under Metabolic Constraints

In this study, we investigate the impact of insulin resistance on the acceleration of brain aging, and test whether increased neuron insulin resistance can be counteracted by utilization of alternate metabolic pathways (e.g., ketones rather than glucose). This study has three Arms, which together provide synergistic data. For all three Arms, subjects are tested in a within-subjects design that consists of 2-3 testing sessions, 1-14 days apart, and counter-balanced for order. During each session we measure the impact of fuel (glucose in one session, ketones in the other) on brain metabolism and associated functioning. For Arms 1-2, our primary experimental measure is functional magnetic resonance imaging (fMRI), which we will use to trace the self-organization of functional networks following changes in energy supply and demand. Arm 1 tests the impact of endogenous ketones produced by switching to a low carbohydrate diet, while Arm 2 tests the impact of exogenous ketones consumed as a nutritional supplement. For Arm 3, we use simultaneous magnetic resonance spectroscopy/positron-emission tomography (MR/PET) to quantify the impact of exogenous ketones on production of glutamate and GABA, key neurotransmitters. Subjects will be given the option to participate in more than one of the Arms, but doing so is not expected nor required. Prior to scans, subjects will receive a clinician-administered History and Physical (H&P), which includes vital signs, an oral glucose tolerance test (OGTT), and the comprehensive metabolic blood panel. These will be used to assess diabetes, kidney disease, and electrolytes. If subjects pass screening, they will be provided the option to participate in one or more Arms, which include neuroimaging. To provide a quantitative measure of time-varying metabolic activity throughout the scan, based upon quantitative models of glucose and ketone regulation, as well as to be able to implement safety stopping rules (see below), we will obtain pin-prick blood samples three times: prior to the scan, following consumption of the glucose or ketone drink, and following completion of the scan. To assess effects of increased metabolic demand, we measure brain response to cognitive load, transitioning from resting-state to spatial reasoning through a Tetris task. To assess effects of increased metabolic supply, we measure brain response to glucose or ketone bolus.

Start: June 2015
Metformin Use to Reduce Disparities in Newly Diagnosed Breast Cancer

Breast cancer is one of the most common malignancies in women globally, with ~1.4 million new cases diagnosed annually Breast cancer is one of the leading causes of cancer-related morbidity and mortality among women worldwide. While diabetes/insulin-resistance and breast cancer are distinct diseases, insulin-signaling plays a central role in both illnesses. Insulin activates key cancer processes including epithelial-mesenchymal transition (EMT), tissue in?ammation, motility, and angiogenesis. There are key opportunities to impact and prevent hyperinsulinemia during breast cancer prevention, surgical assessment, and chemotherapy. Given the high prevalence of undiagnosed pre-diabetes and diabetes in the United States and worldwide, preoperative screening to identify such patients prior to surgical intervention is warranted. While it is not standard of care to test for insulin-resistance during the course of breast cancer screening and treatment, it is standard of care to screen and test high risk women for insulin-resistance as part of whole woman care. Given the important role insulin signaling plays in driving signaling pathways that promote aggressive cancer biology, more attention should be paid by cancer physicians to screening and treating insulin resistance. Several studies have reinforced a link between breast cancer risk and diabetes. Moreover, metformin significantly reduces breast cancer risk, compared to patients who are not using metformin and is independent of diabetes status. As metformin has an association with decreased breast cancer recurrence, as well as potentially improved survival, disparities in insulin resistance between black and white women with breast cancer is important to investigate. It is hypothesized that metformin decreases the development of resistance in breast cancer cells, thereby allowing current chemotherapy agents to work synergistically with metformin. Our objective is to elucidate whether or not metformin is efficacious in improving insulin resistance in black and white women with breast cancer and if racial disparities in breast cancer prognosis can be partially explained by differences in pre-diagnosis insulin resistance which are improved with metformin therapy.

Start: July 2021