300,000+ clinical trials. Find the right one.

76 active trials for Lung Diseases

GEOHealth Hub: Household Air Pollution and Cardio-pulmonary and Immune Function Outcomes

Background: The increasing effect of environmental, occupational and climate change poses serious global threat for public health. More than half of the world's population, including around 85% people in Bangladesh, are exposed to household air pollutants (HAP). Environmental consequences of climate change are among the highest. Little evidence is available on the effects HAP on cardiopulmonary outcomes in low-income populations. Same is true for occupational health and climate change. The investigators will evaluate the effects of HAP on cardio-pulmonary and markers of immune function among non-smoking individuals. The investigators will also conduct two pilot studies to explore health effects associated with working in the garments industry and that of temperature due to climate changes. Hypothesis: Preclinical measures of cardiovascular diseases and pulmonary function are associated with exposure level of house hold air pollution (HAP) (assessed through PM2.5, CO and BC concentrations) Stable biomarkers of immune function and inflammation are associated with exposure level of HAP. Use of improved cook stove reduces exposure to HAP and thereby improve pre-clinical and molecular measures of cardio-pulmonary and immune functions. Methods: The investigators will conduct a cross sectional study to assess the associations of HAP with preclinical makers of CVD among 600 non-smoking participants aged 25 to 65 years. Biomass exposure will be assessed for PM2.5, carbon Monoxide (CO) and black carbon (BC) by collecting personal air samples for 24-hour. Blood sample will be utilized from a subset of 200 adult participants and 60 children aged 3-5 years for assessing immune markers. The study will be conducted in icddr,b and URB study site at Matlab and Araihazar respectively. After the cross sectional assessment, the investigators will conduct a pre-post intervention study to evaluate effectiveness of improved stoves in a subset of 200 homes. The investigators will measure the aforementioned markers after two years of cook stove installation. Finally, as pilot studies, health outcomes due to climate change (temperature change) and occupation (garment industry work) will be explored. Outcome measures: HAP will be assessed through PM2.5, CO and BC concentrations. Pulmonary function will be assessed through FEV1, FVC and FEV1/FVC. Preclinical makers of CVD will include RH-PAT, FMD, IMT, BAD, EKG and PFT. Markers of Immune function - proliferation of macrophage, dendritic cells (DC), neutrophils and T-cell, as well as macrophage derived cytokines (a panel of 17 or 27 cytokines) in peripheral blood mononuclear cells (PBMC)

Start: October 2017
Mitochondrial Dysfunction of Alveolar and Circulating Immune Cells During Acute Respiratory Distress Syndrome: Impact of Infectious Aggression and Alveolar Stretching as a Result of Mechanical Ventilation.

Sepsis leads to a deregulated host response that can lead to organ failure. During sepsis, experimental and clinical data suggest the occurrence of mitochondrial dysfunctions, particularly in circulating muscle and monocytes, which may contribute to organ failure and death. Lower respiratory infection is the leading cause of death from infectious causes. Mechanical ventilation (MV) is required in 20% of cases of bacterial pneumopathy with Streptococcus pneumoniae (S.p.) , with mortality reaching 50%. There are then frequently criteria for acute respiratory distress syndrome (ARDS), combining bilateral lung involvement and marked hypoxemia. Cyclic stretching of lung cells induced by MV causes sterile inflammation and tissue damage (i.e. ventilator-induced lung injury [VILI]), which can cause cellular dysfunction that alter the immune response, particularly during ARDS. This is why the application of a so-called protective MV is then required. However, this does not prevent about one-third of patients from showing signs of alveolar overdistension, as evidenced by an increase in motor pressure (MP) (MP? 15 cmH2O), associated with an increase in mortality. The deleterious effects of MV could be explained by the occurrence of mitochondrial abnormalities. Indeed, the cyclic stretching of lung cells leads to dysfunction in the respiratory chain and the production of free oxygen radicals (FOS), altering membrane permeability. These phenomena could promote VILI, facilitate the translocation of bacteria from the lung to the systemic compartment and lead to alterations in immune response. In our model of S.p. pneumopathy in rabbits, animals on MV develop more severe lung disorders (lack of pulmonary clearance of bacteria, bacterial translocation in the blood, excess mortality), compared to animals on spontaneous ventilation (SV). Intracellular pulmonary mitochondrial DNA (mtDNA) concentrations, a reflection of the mitochondrial pool, are significantly decreased in ventilated rabbits compared to SV rabbits and in infected rabbits compared to uninfected rabbits. At the same time, the mitochondrial content of circulating cells decreased early (H8) in all infected rabbits, but was only restored in rabbits in SV, those who survived pneumonia (Blot et al, poster ECCMID 2015, submitted article). These data suggest an alteration in the mechanisms that restore mitochondrial homeostasis (mitochondrial biogenesis and mitophagy) during the dual infection/MV agression, which may explain the observed excess mortality. Other work by our team illustrates the importance of these phenomena by showing in a mouse model of polymicrobial infection that inhibition of mitophagia in macrophages promotes survival (Patoli et al, in preparation). Human data on this subject are non-existent. The phenomena of mitochondrial dysfunction nevertheless deserve to be explored in humans during the combined MV/pneumopathy aggression in order to understand its possible impact on the effectiveness of the host's immune response. In a personalized medicine approach, these data would open up prospects for targeted therapies, capable of activating mitochondrial biogenesis and/or modulating mitophagia, to prevent organ dysfunction and mortality during severe CALs treated with antibiotic therapy.

Start: June 2019