300,000+ clinical trials. Find the right one.

41 active trials for Brain Injuries, Traumatic

Impact of Early Optimization of Brain Oxygenation on Neurological Outcome After Severe Traumatic Brain Injury

Post-traumatic brain hypoxia/ischemia develops hours after traumatic brain injury (TBI), and its intensity is directly related to the neurological outcome. The thresholds for irreversible tissue damage following TBI indicate a particular vulnerability of injured brain. Improving brain oxygenation after severe TBI is the focus of modern TBI management in the intensive care unit (ICU). The calculation of cerebral perfusion pressure (CPP), with CPP = mean arterial pressure (MAP) - intracranial pressure (ICP), has become the most used estimator of cerebral blow flow. To prevent ischemia due to elevated ICP, current international guidelines recommend maintaining CPP at 60-70 mmHg and ICP below 20 mmHg. However, episodes of brain hypoxia/ischemia, as assessed with brain tissue oxygen pressure (PbtO2) measurements, might occur despite optimization of CPP and ICP, and have been independently associated with poorer patient outcome. PbtO2 values lower than 15 mmHg for more than 30 minutes were shown to be an independent predictor of unfavorable outcome and death. The aggressive treatment of low PbtO2 was associated with improved outcome compared to standard ICP/CPP-directed therapy in cohort studies of severely head-injured patients. On the basis of these findings, it is hypothesized that an early optimization of brain oxygenation, together with keeping ICP and CPP within recommended values, could reduce the volume of vulnerable lesions following severe TBI and possibly improve neurological outcome.

Start: June 2016
Mobile Subthreshold Exercise Program for Concussion--R01

Approximately 1.9 million youth sustain a concussion each year, and up to 30% experience persistent post-concussive symptoms (PPCS) such as headache, dizziness, and difficulty focusing that continue for weeks or months. PPCS results in greater utilization of sub-specialty care and can impact immediate and long-term social development, cognitive function and academic success. Previous recommendations for treating PPCS have focused on cognitive and physical rest, but more recently guidelines have shifted based on new research suggesting the benefit of rehabilitative exercise for PPCS. The rationale behind using exercise to treat youth with concussion is that gradually increasing physical activity facilitates return to full function. Rehabilitative exercise has since become one of the most common approaches to treating youth with PPCS, but access is challenging since most programs require weekly centralized visits with a concussion specialist. To bridge this gap, the investigators developed a telehealth-delivered approach to treat PPCS, utilizing physical activity trackers (Fitbits) and weekly video conferences with trained research staff. They then conducted a series of pilot studies with this approach, finding excellent feasibility, acceptability, and evidence for more rapid declines in concussive symptoms compared to controls. The investigators also found preliminary evidence that mechanisms behind this intervention may stem from both physiologic processes due to increased moderate-to-vigorous physical activity (MVPA) and psychologic processes such as reducing fear- avoidance of concussive symptoms. They now propose a fully-powered randomized controlled trial (RCT) to asses the efficacy of the "Mobile Subthreshold Exercise Program" (M-STEP) for treating youth with PPCS.

Start: March 2021
Medical and Resource Facilitation Intervention After Traumatic Brain Injury

Mayo Clinic's Traumatic Brain Injury (TBI) Model System Center (TBIMSC) will capitalize on longstanding collaborations with the non-profit Minnesota Brain Injury Alliance (MN BIA) and Minnesota Department of Health (MDH) to test a new way of delivering medical and social services. This trial will address chronic unmet needs expressed by individuals with TBI and their families in the U.S. pertaining to the ineffective connection to specialized medical and community resources in the transition from hospital to community-based care, limited access to TBI experts, and lack of primary care provider (PCP) knowledge about the complex needs of individuals with TBI. Target populations for this study are: 1) individuals with TBI eligible for MN BIA provided Resource Facilitation (RF), 2) their families, and 3) their PCPs. This clinical trial will use a theory-driven complex behavioral intervention that integrates the medical-rehabilitation, therapy, and TBI expertise of Mayo's Brain Rehabilitation Clinic (BRC) with MN BIA's highly developed RF program (a free two-year telephone support service offering assistance in navigating life after brain injury). Mayo Clinic's medical-rehabilitation expertise will be integrated with RF services to deliver direct clinical care remotely using telemedicine and other information and communication technology to test whether outcomes over time are better in a group receiving this model of care compared to a group that receives usual care in their communities. Costs between usual care and intervention groups will be compared in collaboration with the MDH. The overarching goal is development of a replicable, sustainable, and cost effective model of telemedicine care that integrates TBIMS Centers and BIAs nationwide and builds TBI expertise and capacity among PCPs.

Start: January 2019
Exploring the Utility of [18F]3F4AP for Demyelination Imaging in Controls, Neurodegeneration and Traumatic Brian Injury

The overall objective is to obtain an initial assessment of the value of using [18F]3F4AP for imaging demyelinating diseases such as traumatic brain injury (TBI), neurodegenerative diseases such as mild cognitive impairment (MCI) and Alzheimer's Disease (AD): Aim 1) Assess the safety of [18F]3F4AP in healthy volunteers and subjects with traumatic brain injury (TBI) and neurocognitive impaired subjects (AD/MCI). Hypothesis 1: Administration of [18F]3F4AP will result in no changes in vitals or other adverse events. Aim 2) Assess the radiation doses to the main organs in healthy volunteers. Hypothesis 2: the radiation doses to each organ will be comparable in all subjects and within the acceptable limits. Aim 3) Assess the pharmacokinetics of a bolus infusion of [18F]3F4AP in humans including healthy volunteers and patients. Hypothesis 3: the pharmacokinetics of [18F]3F4AP at the whole brain level will be similar in controls, TBI and AD/MCI subjects. The kinetics in demyelinated lesions will be slower than in healthy areas. Aim 4) Correlate MR images with [18F]3F4AP PET images. Hypothesis 4A: all the lesions seen on the MRI will show increased signal (VT or SUV) on the PET images. Hypothesis 4B: some of the lesions on the MRI will show increased signal (VT or SUV) on the PET but not all. Aim 5) Correlate [18F]3F4AP PET signal with neuropsychological testing in people with TBI and AD/MCI. Hypothesis 5A: increased PET signal (VT or SUV) will correlate with impaired Mini Mental State Examination (MMSE).

Start: January 2021
The Role of Hyperbaric Oxygen and Neuropsychological Therapy in Cognitive Function Following Traumatic Brain Injury

Traumatic brain injury (TBI) caused by accidents is a very important public health problem in Taiwan. There are many people with brain damage and cognitive dysfunction caused by traumatic brain injury every year. Currently, there is no effective treatment for cognitive dysfunction caused by traumatic brain injury. Evidence from clinical studies in recent years suggests that hyperbaric oxygen therapy may be a treatment for repairing nerves after brain injury. Many studies have shown that oxidative stress and inflammatory responses play an important role in the pathogenesis of the central nervous system. In recent years, our research team has shown that oxidative stress and inflammatory response are significantly associated with the prognosis of patients with traumatic brain injury, cerebral hemorrhage, and stroke patients. More and more evidences also show that oxidative stress and inflammatory response play an important role in the neuropathological changes of mental cognitive sequelae after traumatic brain injury. This injury may be gradual from the time of head trauma. This process begins with the generation of oxidative stress and free radicals. When the cell repair and free radical scavenging system can not effectively overcome the excessive production of free radicals, an oxidative damage reaction will occur, causing a series of inflammatory cells and cytokines to be activated. Studies have also shown that when inhibiting those free radicals that produce oxidative stress, the neurological function and cognitive function of the head after trauma can be significantly improved. It is becoming widely acknowledged that the combined action of hyperoxia and hyperbaric pressure leads to significant improvement in tissue oxygenation while targeting both oxygenand pressure-sensitive genes, resulting in improved mitochondrial metabolism with anti-apoptotic and anti-inflammatory effects. The investigators published an article this year showing that hyperbaric oxygen therapy can improve the prognosis of patients with acute stroke and increase endothelial progenitor cells in the systemic circulation. The investigators plan to conduct this research project through hyperbaric oxygen therapy and neuropsychological therapy, and using scientific tests and neurocognitive function assessments. The investigators hope to answer the following questions: (1) Whether the treatment of hyperbaric oxygen can improve oxidative stress and inflammatory response after brain injury, and observe changes in biomarker concentration; (2) Whether hyperbaric oxygen therapy and neuropsychological therapy can improve cognitive function after brain injury; and (3) which biomarkers are factors that influence cognitive function prognosis.

Start: April 2019