300,000+ clinical trials. Find the right one.

54 active trials for ARDS, Human

Effects of Sevoflurane on Extravascular Lung Water and Pulmonary Vascular Permeability in Patients With ARDS

The study will investigate the effects of inhaled sedation with sevoflurane using the AnaConDa device on extravascular lung water index (EVLWi) and the pulmonary vascular permeability index (PVPI) in patients with moderate to severe acute respiratory distress syndrome (ARDS). Improvement in oxygenation and decreases in lung inflammatory response has been demonstrated in patients with ARDS compared with intravenous sedation. However, preclinical data showing a decrease in lung edema has not been confirmed. The hypothesis is that inhaled sedation with sevoflurane reduces EVLWi and PVPI in patients with ARDS, assessed with the PiCCO device. Patients will receive either inhaled sedation (interventional group), or a sedation with propofol (control group). Both will be associated with remifentanil. Sedation will be monitored by bispectral index with a targeted value of 30-50. The primary outcome will be daily assessment of EVLWi and PVPI over time in patients sedated with sevoflurane compared to propofol. Secondary outcomes will include value of PVPI and EVLW at 48h after intubation, fluid administration, need in norepinephrine, time between cessation of sedation and trial of weaning sedation, ventilation free days, mortality at day 28, the partial pressure of arterial oxygen to fraction of inspired oxygen ratio (PaO2/FiO2), plasma and alveolar levels of cytokines (tumor necrosis factor (TNF)-?, interleukine (IL)-1?, IL-6, IL-8). These blood and alveolar samples will be done at baseline, on day 2 and on day 5. A sub-group analysis will be done in Covid-19 related ARDS. Decrease in PVPI and EVLWi with inhaled sevoflurane may be related to the decrease in lung edema in ARDS patients and may ultimately improve patient outcome.

Start: November 2020
Using GM-CSF as a Host Directed Therapeutic Against COVID-19

The coronavirus disease 2019 (COVID-19) has rapidly become a pandemic. COVID-19 poses a mortality risk of 3-7%, rising to 20% in older patients with co-morbidities. Of all infected patients, 15-20% will develop severe respiratory symptoms necessitating hospital admission. Around 5% of patients will require invasive mechanical ventilation, and up to 50% will die. Evidence in severe COVID-19 suggests that these patients experience cytokine storm and progressed rapidly with acute respiratory distress syndrome and eventual multi-organ failure. Early identification and immediate treatment of hyperinflammation is thus recommended to reduce mortality. Granulocyte Macrophage Colony Stimulating Factor (GM-CSF) has been shown to be a myelopoietic growth factor that has pleiotropic effects in promoting the differentiation of immature precursors into polymorphonuclear neutrophils, monocytes/ macrophages and dendritic cells, and also in controlling the function of fully mature myeloid cells. It plays an important role in priming monocytes for production of proinflammatory cytokines under TLR and NLR stimulation. It has a broad impact on the processes driving DC differentiation and affects DC effector function at the mature state. Importantly, GM-CSF plays a critical role in host defense and stimulating antiviral immunity. Detailed studies have also shown that GM-CSF is necessary for the maturation of alveolar macrophages from foetal monocytes and the maintenance of these cells in adulthood. The known toxicology, pharmacologic and safety data also support the use of Leukine® in hypoxic respiratory failure and ARDS due to COVID-19. This study aims to recruit patients with evidence of pneumonia and hypoxia who have increased risk for severe disease and need for mechanical ventilation. The overall hypothesis is that GM-CSF has antiviral immunity, can provide the stimulus to restore immune homeostasis in the lung with acute lung injury from COVID-19, and can promote lung repair mechanisms, which would lead to improvement in lung oxygenation parameters.

Start: June 2020