Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
Anesthesia
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Parallel AssignmentIntervention Model Description: One hundred sixty-participants (40/group) aged 18-65 years, ASA physical status I-II, of either sex, and undergoing elective non-cardiac surgery of minimum 60-minutes duration recruitment will be randomly divided into one of the four groups: Group-1 [CLADS group, n= 40, study group], Group-2 [Marsh model (MM) group, n= 40, study group], Group-3 [Schneider Model (SM) Group, n= 40, study group], and Group-4 [Manual (M) Group, n= 40, Control group].Masking: Double (Participant, Outcomes Assessor)Masking Description: Inside the operating, the attending anaesthesiologist will not be blinded to the technique utilized to administer general anaesthesia (GA) and the recovery parameters immediately after extubation. However, the postoperative patient recovery profile will be evaluated by an independent assessor blinded to the GA technique and peri-extubation profile.Primary Purpose: Other

Participation Requirements

Age
Between 18 years and 65 years
Gender
Both males and females

Description

Inhalation anaesthetic were backbone of general anaesthesia (GA) practice till the time an intravenous anaesthetic, propofol was introduced in early 1970's and its commercial availability in 1980's, which led to the resurgence in the practice of total intravenous anaesthesia (TIVA). TIVA is now bein...

Inhalation anaesthetic were backbone of general anaesthesia (GA) practice till the time an intravenous anaesthetic, propofol was introduced in early 1970's and its commercial availability in 1980's, which led to the resurgence in the practice of total intravenous anaesthesia (TIVA). TIVA is now being adopted as a preferred technique for providing GA because of scores of inherent advantages, like, reduced PONV incidence, improved quality of post-anaesthesia recovery, anti-inflammatory and anti-oxidant action, anti-neoplastic activity, analgesic action, and absence of greenhouse effect among many others.Over the years propofol-TIVA delivery has become more methodical and precise owing to the use of target controlled infusion (TCI) systems. TCI systems use propofol pharmacokinetic (PK) or pharmacodynamics (PD) models which predict either the plasma or the effect-site propofol concentration required for maintenance of GA steady-state during surgery. The 'Diprifusor' TCI-system was the first commercially available propofol TCI-system. The 'Diprifusor' TCI-system was a 'closed' TCI-system which required a special electronically tagged pre-filled propofol syringe to be attached to the TCI-pump. The current TCI technology has evolved with the introduction of the 'open' TCI concept wherein syringes of any configuration can be attached to the TCI-pumps having pre-programmed propofol PK-PD models. Currently, the two most commonly used PK-PD models that drive TCI systems to deliver TIVA are the 'Marsh' and 'Schneider' models. Whereas Marsh model targets blood plasma concentration of propofol for anaesthesia maintenance, the Schneider model targets effect-site concentration in the brain. A recent advance in propofol TIVA delivery has been the development of automated closed loop anaesthesia delivery system. These devices deliver propofol based ascertaining patient's frontal cortex electrical activity as determined by bispectral index (BIS) score and then keeping the values within a pre-assigned range consistent with robust GA depth. Closed loop anaesthesia delivery system (CLADS) is an indigenously developed patented (502/DEL/2003) computer-controlled anaesthesia delivery system. CLADS typically works with feedback loop information elicited by BIS monitoring and delivers propofol TIVA to the patient via a non-TCI automated infusion pump. This basis of CLADS is the control algorithm based on the relationship between diverse rates of propofol infusion and the processed EEG variable. Although propofol delivery by CLADS is based on pharmacokinetic model but for greater precision and efficient administration, its delivery trigger is directly linked with feedback mechanism involving patient's EEG profile as monitored by the BIS scores. In a multicentre study on evaluation of anaesthesia delivery by CLADS, it was shown that CLADS maintains depth of anaesthesia with far more precision as compared to manual administration. Queerly while TCI & CLADS technology evolved over a period of time; there is no data available comparing the efficacy of TCI delivered propofol-TIVA versus automated propofol delivery systems. Based on additional feedback loop incorporated to the PK-PD model the investigators contend that automated propofol TIVA as administered by CLADS is likely to be superior to TCI system in achieving and sustaining anaesthesia depth. This randomized controlled study aims to compare the efficacy of CLADS-driven propofol TIVA versus TCI administered propofol TIVA in adult patients undergoing non-cardiac surgery with respect to: adequacy of anaesthesia depth maintenance (primary objective), performance characteristic of propofol delivery system, propofol requirement, hemodynamic stability, recovery from anaesthesia and postoperative sedation (secondary objectives).

Tracking Information

NCT #
NCT04731480
Collaborators
Not Provided
Investigators
Study Chair: Jayashree Sood, MBBS, MD, FFRCA, PGDHHM, FICA Sir Ganga Ram Hospital, New Delhi, INDIA Study Director: Goverdhan D Puri, MBBS, MD, PhD Postgraduate Institute for Medical Education & Research, Chandigarh, India Principal Investigator: Nitin Sethi, MBBS, DNB Sir Ganga Ram Hospital, New Delhi, INDIA Principal Investigator: Amitabh Dutta, MBBS, MD, PGDHR Sir Ganga Ram Hospital, New Delhi, INDIA