Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Ametropia
  • Macular Degeneration
  • Ptosis
Design
Observational Model: OtherTime Perspective: Cross-Sectional

Participation Requirements

Age
Between 18 years and 125 years
Gender
Both males and females

Description

Virtual reality (VR) constructs a 3-D reality right in a headset and the researchers are studying with what degree of accuracy it can be use to recreate vision tests that are used by eye doctors to screen and diagnose patients. VR provides advantages that could be used to improve eye care once the t...

Virtual reality (VR) constructs a 3-D reality right in a headset and the researchers are studying with what degree of accuracy it can be use to recreate vision tests that are used by eye doctors to screen and diagnose patients. VR provides advantages that could be used to improve eye care once the technology is tested and compared to the currently used vision tests - such as limiting the costs, duration and tedium associated with existing forms of vision screening tests. By doing so, the researchers hope to expand access to eye care by lowering the cost burden associated with vision tests. In this study, the research team will have subjects go through the VR versions of the test that are used in practice, and analyze their results in comparison to one another. After informed consent is obtained, the research team will collect subject demographic information (date of birth, gender, ethnicity, race) and clinically relevant medical history. Afterward, the research team will proceed to the virtual reality tests: vision field perimetry, Amsler, Snellen chart, contrast- sensitivity and currently used office tests. The participants will undergo all the tests, VR and non-VR, which will be delivered in a randomized order. The entire sequence will last 30 minutes to one hour for a single test. The VR component will last about 5 minutes, this being the only addition to the scheduled vision tests. The sequence of VR / non VR testing will be randomized. Based on the previous studies that compared Humphrey MATRIX visual field and Swedish Interactive algorithm, the effect size is determined to be at least 30 subjects, and the goal is to reach N=1,000 participants.

Tracking Information

NCT #
NCT04714424
Collaborators
Not Provided
Investigators
Principal Investigator: James Chelnis, MD New York Eye and Ear Infirmary of Mount Sinai