Recruitment

Recruitment Status
Not yet recruiting
Estimated Enrollment
Same as current

Summary

Conditions
Stroke
Type
Interventional
Phase
Not Applicable
Design
Allocation: N/AIntervention Model: Single Group AssignmentIntervention Model Description: Once patients are enrolled, baseline data and pre-intervention outcome measures will be collected. APPs will be selected from the VR Toolkit that best address the individual patient's treatment goals. Patients will be instructed in the use of the head mounted display with VR APPs. VR dosage will be two one-half hour sessions per therapy day. Patients can initiate use of a more challenging APPs that gradually includes hand/arm movement.Masking: None (Open Label)Primary Purpose: Treatment

Participation Requirements

Age
Between 18 years and 80 years
Gender
Both males and females

Description

Background. Over the last decade, Virtual Reality (VR) has emerged as a cutting-edge technology in stroke rehabilitation. VR is defined as a type of user-computer interface that implements real-time simulation of an activity or environment allowing user interaction via multiple sensory modalities. V...

Background. Over the last decade, Virtual Reality (VR) has emerged as a cutting-edge technology in stroke rehabilitation. VR is defined as a type of user-computer interface that implements real-time simulation of an activity or environment allowing user interaction via multiple sensory modalities. VR interventions in a stroke population have been shown to be equivalent to usual care therapies and to enhance motor recovery when utilized as an adjunct. Significance/Impact/Innovation. This research will advance knowledge in rehabilitation research by testing state-of-the-art immersive 3-dimensional VR technology with the post-acute stroke Veteran population. The proposed project addresses: (1) the RR&D goal of maximizing functional recovery, (2) interest in non-pharmacological activity-based interventions for pain, and (3) supports modernization of the Veterans' Health Administration by incorporating technology-assisted rehabilitation. Specific Aims. (1) Determine the feasibility and tolerability of using a therapeutic VR platform in an inpatient comprehensive stroke rehabilitation program and (2) Estimate the initial clinical efficacy, or effect size, associated with the VR platform using APPS for distraction and upper extremity exercise for Veterans post-stroke. Methodology. Prospective within-subject pre-post pilot and survey study designs will be used. The target populations are (1) clinical staff who work on the Comprehensive Interdisciplinary Inpatient Rehabilitation Program (CIIRP) at the James A. Haley Veterans' Hospital (JAHVH) in Tampa (sample size N=10) and Veterans who are inpatients in the CIIRP (sample size N=10). The VR intervention consists of wearing a head mounted display that plays APPs ranging from music and nature views for pain distraction to more challenging strengthening and coordination activities such as playing the piano virtually. The intervention will last four weeks. The analytic approach will use descriptive statistics and qualitative methods. Aim 1 will administer a survey with open and closed ended questions to clinicians to examine the feasibility of successfully integrating a VR intervention into the flow of usual care. Feasibility constructs include adaptability (can VR intervention be adapted to an inpatient unit), patient need (do Veterans like and benefit from the intervention), and staff comments/impressions. Responses for each construct will be entered into an excel spreadsheet, one tab for each construct. Responses will then be grouped by similar content. Results will be reported as themes and subthemes. Aim 1 will also track patient VR tolerability by documenting and discussing patient complaints and adverse events. Tolerability data will be extracted from meeting minutes and grouped by similar occurrences. Results will be reported as themes and subthemes. Aim 2 will estimate effect sizes and degree of precision for upper extremity neurologic recovery, hand dexterity, and pain outcomes measured pre and post VR intervention. Neurologic recovery is measured with the Fugl-Meyer Assessment of Motor Recovery after Stroke-Upper Extremity, dexterity is measured with the Action Research Arm Test, and pain is measured with the Pain Outcomes Questionnaire-VA. Because standard scores do not necessarily translate to meaningful clinical differences (improvements), the investigators will identify the proportion of subjects who experience the minimal clinically important difference (MCID). Metrics will also be compared across outcomes. Next Steps/Implementation. Our next step is to work with our Program Partner in the Physical Medicine and Rehabilitation Office to conduct a large multi-site clinical trial that will incorporate the lessons learned from this feasibility pilot study to test the efficacy of a VR intervention in inpatient rehabilitation and transition to home evironments.

Tracking Information

NCT #
NCT04429945
Collaborators
Not Provided
Investigators
Principal Investigator: Johanna E. Tran, MD James A. Haley Veterans' Hospital, Tampa, FL