Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Adiposity
  • Drug Effect
  • Glucose Intolerance
  • Overweight and Obesity
Type
Interventional
Phase
Phase 4
Design
Allocation: RandomizedIntervention Model: Crossover AssignmentIntervention Model Description: Randomized crossover clinical trialMasking: None (Open Label)Primary Purpose: Basic Science

Participation Requirements

Age
Between 18 years and 50 years
Gender
Both males and females

Description

Incretins, the analogs of glucagon-like peptide-1 (GLP-1), improve glucose control in type 2 diabetes mellitus and counteract obesity through mechanisms that are not completely understood. The investigators' preliminary data show that, in prediabetic human subjects and mice, GLP-1 analog therapy ind...

Incretins, the analogs of glucagon-like peptide-1 (GLP-1), improve glucose control in type 2 diabetes mellitus and counteract obesity through mechanisms that are not completely understood. The investigators' preliminary data show that, in prediabetic human subjects and mice, GLP-1 analog therapy induces an increase in plasma interleukin-6 (IL-6), a cytokine activating signal transducer and activator of transcription 3 (STAT3) signaling, which induces brown (beige) adipocyte differentiation in adipose tissue (AT). The investigators discovered that plasma IL-6 induction occurs through GLP-1 receptor (GLP-1R) stimulation in leukocytes. Interestingly, studies in rodents indicate that GLP-1 / GLP-1R signaling also induces AT beiging. Based on these observations, the investigators hypothesize that incretins induce AT browning in part via transient IL-6 / IL-6 receptor (IL-6R) / STAT3 signaling. The primary objective is to further elucidate the role of IL-6 and GLP-1 signaling in mediating beneficial metabolic effects of incretin therapy. Studies will be paralleled in a human clinical trial, a human cell culture model, and a mouse diet-induced obesity model. GLP-1 analog therapy combined with an IL-6 blocking antibody will be used. Specific Aim 1 is to (A) investigate IL-6 induction / downstream STAT3 signaling and AT browning upon incretin therapy in prediabetic human subjects; and (B) validate mice as a model to study incretin-induced IL-6 signaling as a mediator of AT browning. Specific Aim 2 is to (A) investigate if GLP-1 analog effects on beige adipogenesis depend on IL-6 signaling in human adipocyte progenitors; and (B) investigate if GLP-1 analog effects on beige adipogenesis depend on IL-6 signaling in mice. It is expected that 1) GLP-1 analog signaling via GLP-1R induces IL-6 secretion by leukocytes, and 2) GLP-1 analog therapy induces adipose tissue browning via both direct GLP-1 / GLP-1R signaling and indirect incretin-induced IL-6 / IL-6R / STAT3 signaling. The results of this novel study will give critical insights on the anti-obesity mechanisms of GLP-1 analogs and serve as the basis for developing more targeted therapies for diabetes and obesity. Understanding the anti-diabetic IL-6 effects will also be important for interpreting the results of IL-6 blockade, a therapeutic approach for patients with diabetes and other inflammatory conditions, which may need to be re-considered.

Tracking Information

NCT #
NCT04387201
Collaborators
Not Provided
Investigators
Principal Investigator: Absalon D Gutierrez, MD The University of Texas Health Science Center at Houston, Dept. of Medicine