Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
COVID-19
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Parallel AssignmentIntervention Model Description: Two groups, control and intervention.Masking: None (Open Label)Masking Description: Sensor monitoring can not be masked since it is the prerequisite for the measures.Primary Purpose: Supportive Care

Participation Requirements

Age
Between 18 years and 125 years
Gender
Both males and females

Description

Severe acute respiratory syndrome (SARS) SARS-Cov-2 disease (COVID-19) is an infectious disease caused by a coronavirus. The pandemic first described in Wuhan, China, has since spread across the whole world and caused dramatic strain on health care in many countries. The virus spreads primarily thro...

Severe acute respiratory syndrome (SARS) SARS-Cov-2 disease (COVID-19) is an infectious disease caused by a coronavirus. The pandemic first described in Wuhan, China, has since spread across the whole world and caused dramatic strain on health care in many countries. The virus spreads primarily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes.1 Patients infected with the virus mostly report mild to moderate respiratory symptoms like shortness of breath and coughing, and febrile symptoms. Most recover without requiring special treatment. However, older people, and those with underlying medical problems (cardiovascular disease, diabetes, chronic respiratory disease, and cancer) are more likely to develop serious illness.1 Younger patients have been reported with serious illness as well. In the present situation, it is of paramount importance to preserve health service capacity by identifying those with serious illness without transferring all infected patients to emergency rooms or Hospitals. In addition, it is important to identify seriously ill patients early enough and before they reach a point of deterioration where they can be extremely challenging to handle in both prehospital and hospital environment. The number of subjects with positive test of the virus is increasing and so does the number of patients hospitalized.2 In parallel, most patients with positive test result or typical clinical symptoms are at home with information what to do if their clinical symptom status deteriorates.2 The Norwegian Interaction Reform was implemented in 2012.3 Key elements of the reform are guidance of the health care in the future and identify new directions. Prevention and early efforts are important and this will be achieved by creating co-working arenas for different parts of our health system. More health services must be moved closer to where the inhabitants live and simultaneously strengthening the community health system. New tools for monitoring the well-being of the patients must be developed in order to act early enough to avoid severe deterioration of health status and avoid new hospitalization. This goal has become even more important during the Covid 19 pandemic because the healthcare system is not prepared or built to take care of all these patients in hospitals. In the local community's wearable and wireless biosensors collecting continuous physiological data (CPD) in real time in order to generate information reflecting the patients' current state is established. This is recognized as welfare technology, and it is a generic term for a heterogeneous group of technologies.4 There are few studies documenting their efficacy, effectiveness and efficiency. One key driver for the development of wearable biosensors is the potential to use CPD to generate real-time, clinically actionable insights from predictive analytics that include early warnings of clinical deterioration and prompts for behavioral changes. The advent of machine learning methods that can detect subtle patterns from large sets of CPD may make this achievable. Using CPD to guide clinical decisions may be a major advance for patients with chronic diseases and at present time when our health system is put on an extreme stretch. This may drive the evolution from episodic to continuous patient care. The present study is designed to sample biosensor data from patients treated and observed at home due to mild and moderate SARS-Cov-2 disease. Such a system would be useful, both for the treatment of individual patients as well as for assessing the efficacy and safety of care given to these patients. Investigators intend to improve quality and safety of home care by continuous monitoring and a set of rules for follow-up. Investigators hypothesized that patients and local health system may benefit from the feedback of a simple monitoring system, which detects changes in respiration, temperature and circulation variables in combination with the patient's subjective experiences of care. Patients may be referred to hospitalization earlier. In the present study investigators will use live continuous and non-continuous biosensor data to monitor the development of vital parameters for Covid 19 patients compared with patients who are not monitored electronically (standard of care).

Tracking Information

NCT #
NCT04335097
Collaborators
  • University of Stavanger
  • Oslo University Hospital
  • Norwegian Telemedicine
  • University of Basque Country (UPV/EHU)
Investigators
Principal Investigator: Lars Wik, MD Oslo University Hospital