Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
5000

Summary

Conditions
Glioma
Design
Observational Model: CohortTime Perspective: Prospective

Participation Requirements

Age
Between 17 years and 125 years
Gender
Both males and females

Description

Gliomas, a type of brain tumour, are the most common primary tumour of the central nervous system (CNS) and in 2016 there were 5250 deaths from brain tumours in the UK. However, brain tumours are a challenging disease to treat. The tumour's location within the brain and its tendency to grow into nea...

Gliomas, a type of brain tumour, are the most common primary tumour of the central nervous system (CNS) and in 2016 there were 5250 deaths from brain tumours in the UK. However, brain tumours are a challenging disease to treat. The tumour's location within the brain and its tendency to grow into nearby brain tissue often make it very difficult to remove the tumour completely with surgery. There is also difficulty in delivering drugs in adequate amounts to the tumour due to the natural defences of the brain. Brain tumours arise due to changes in the DNA and other molecules in cells of the brain. Different types of gliomas can have different changes and these can be used to determine a precise 'molecular diagnosis'. The ultimate goal for the Tessa Jowell BRAIN MATRIX is to learn how to use these molecular changes to more precisely determine what exact type of tumour patients have, and to identify, decide and test whether specific 'targeted' treatments could improve the survival and/or quality of life of patients with brain tumours. The Tessa Jowell BRAIN MATRIX is a programme of work, the principal purpose of which is to improve the knowledge of, and treatment for, glioma. The programme will include a Platform Study and subsequent interventional clinical trials. The Tessa Jowell BRAIN MATRIX Platform Study forms the backbone of this programme. In the Platform Study, the aim is to develop the infrastructure to provide rapid and accurate molecular diagnosis and the infrastructure to deliver clinical trials of new therapies in the future, thereby improving clinical outcomes in brain tumours. The researchers aim to recruit 1,000 patients to the study. As gliomas occur at all ages and their specific subtype is hard to predict pre-operatively, the patient population eligible for the study is broad. A large network of clinical hubs across the UK, with expertise in managing patients with brain tumours, will be developed. Once established this infrastructure will facilitate the rapid introduction of clinical trials testing targeted therapies tailored to the genetic changes of an individual's tumour. Eligible patients will either have had, or be about to have, surgery for their tumour. As part of this study, tumour removed during the operation will be analysed to look for specific molecular changes. As with normal standard care, the tumour will be analysed by a local pathologist. A small part will be sent for review by experts and advanced molecular analysis will be undertaken to get a detailed understanding of the DNA/molecular changes within the patient's tumour. These results will be fed back to the patient's treating doctor. It is intended that this will occur within 28 days; however, it may be longer while the study becomes fully operational. If samples are available from a patient's previous surgery to their tumour, these may also be analysed. Similarly, if available, other relevant samples such as cerebrospinal fluid, collected as part of their care, may also be analysed. In addition, as technologies and analyses improve the understanding of brain tumours, the researchers may find important results at a later date. These will be fed back to the patient's doctor. Patients will also be asked to give a blood sample, which will also be analysed to look at the molecular features, including of their DNA. This is required to identify what 'new' changes have occurred in the patient's tumour. Following surgery, patients will continue with other treatment(s) as directed by their doctor. Treatment generally involves radiotherapy and chemotherapy. As is standard practice, patients will be closely monitored for signs of disease progression and the effects of the treatment given. As part of this study, information on patients' treatments and disease will be collected. Images from brain scans patients undergo, along with relevant clinical information, will also be sent to and stored by the University of Edinburgh, and where appropriate, undergo expert review by a panel of radiologists with expertise in brain tumours. If patients have further surgery, some of the tissue removed may also be analysed.

Tracking Information

NCT #
NCT04274283
Collaborators
  • The Brain Tumour Charity
  • University of Oxford
  • University of Edinburgh
Investigators
Principal Investigator: Colin Watts Unviersity of Birmingham