Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
Insulin Resistance
Type
Interventional
Phase
Not Applicable
Design
Allocation: N/AIntervention Model: Single Group AssignmentMasking: None (Open Label)Primary Purpose: Basic Science

Participation Requirements

Age
Between 12 years and 18 years
Gender
Both males and females

Description

One in five American adolescents is obese. Up to half of those are already exhibiting insulin resistance (IR), a hallmark of metabolic syndrome and diabetes linked to serious life-altering health disorders, including cardiovascular and cerebrovascular disease. In adults, IR negatively affects brain ...

One in five American adolescents is obese. Up to half of those are already exhibiting insulin resistance (IR), a hallmark of metabolic syndrome and diabetes linked to serious life-altering health disorders, including cardiovascular and cerebrovascular disease. In adults, IR negatively affects brain structure and function and is reflected in lower regional brain volumes, perfusion, increased white matter hyperintensities and abnormal neuropsychological status, especially affecting memory and attention-all changes associated with accelerated cognitive and brain aging and increased risk of dementia. In an analogous fashion, a limited set of literature suggests adolescents with IR exhibit similar brain changes during maturation. The investigators hypothesize that the brains of obese adolescents are more susceptible to insults of IR during rapid brain development, positioning them on an abnormal cognitive trajectory, and predisposing them to issues related to learning, behavioral stress responses, and depression. While the metabolic consequences of IR are well described in adolescence, the impact of IR on their neurocognitive status (intelligence, memory, attention, executive function, processing speed) and cerebrovascular function and their interactions remains largely unexplored. This is important since in addition to its classic role as a metabolic hormone, insulin acts as a vasodilator and supports neurotrophic signaling in healthy humans. Therefore, dysfunctional insulin signaling may hold tremendous influence over brain health in adolescents during this vital period of brain development. New insight is required to understand where, when, and how IR negatively transforms brain health, including whether a dose-response exists between IR severity and anomalies in brain and cognition. The long-term goal of this research program is to determine the influence of IR on brain development in adolescents through the relationships between neurocognition and cerebral blood supply. The primary goal of the current project is to quantify fundamental neurocognitive and cerebrovascular function in relation to the severity of IR. The central hypothesis is that as IR worsens: a) subtle but meaningful neurocognitive declines emerge; b) regional brain perfusion is reduced primarily in areas linked to learning and memory despite preserved resting global cerebral blood flow (CBF); c) acute insulin surges exacerbate regional hypoperfusion, and d) cognitive scores will be lower, mediated in part by insulin-stimulated hypoperfusion. Participants will be recruited primarily from pediatric and pediatric endocrinology clinics via our collaborator, Dr. Aaron Carrel, and his staff in UWHC Pediatric Endocrinology. Additionally, participants will be recruited from the greater Madison, WI community.

Tracking Information

NCT #
NCT04089332
Collaborators
Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
Investigators
Principal Investigator: William Schrage, PhD University of Wisconsin, Madison