Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Anesthesia
  • Pain
Type
Interventional
Phase
Phase 1
Design
Allocation: RandomizedIntervention Model: Parallel AssignmentIntervention Model Description: Placebo-controlled, within-subjectMasking: Single (Participant)Masking Description: single-blindPrimary Purpose: Basic Science

Participation Requirements

Age
Between 18 years and 39 years
Gender
Both males and females

Description

Purpose: Sedative-hypnotic and analgesic agents (termed "anesthetics") are routinely used during medical procedures to prevent or ease suffering, suppressing the conscious experience of pain and its encoding into memory. While overt awareness under general anesthesia is a rare clinical event, implic...

Purpose: Sedative-hypnotic and analgesic agents (termed "anesthetics") are routinely used during medical procedures to prevent or ease suffering, suppressing the conscious experience of pain and its encoding into memory. While overt awareness under general anesthesia is a rare clinical event, implicit memory may still form. Further, at sub-hypnotic anesthetic doses, animals show enhanced fear conditioning and humans may have enhanced amygdala activity. This motivates the investigator's study, as poorly-contextualized aversive memories are theorized to initiate anxiety-spectrum disorders, which may explain the high incidence of post-traumatic stress disorder after anesthetic awareness. Objective: How anesthetics facilitate or inhibit poorly-contextualized aversive memories is incompletely understood, with little mechanistic work done in human subjects. Thus, there is a critical need to understand how anesthetics modulate the memory and threat response systems during painful stimulation. The overall scientific objective is to determine the memory-modulating effects of propofol, dexmedetomidine, and fentanyl in the context of periodic painful stimulation. Aim 1: Determine how behavioral and physiologic measures of memory are modulated by pain and the individual effects of three pharmacologically distinct drugs: propofol, dexmedetomidine, and fentanyl. Hypotheses: Based on previous results, 1a) explicit memory will be significantly reduced by propofol and dexmedetomidine, but only modestly by fentanyl. Consistent with my preliminary data, 1b) priming effects will be seen for pain-paired words under all drugs. Electrodermal activity changes still occur with opioids and propofol, thus 1c) pain-related physiologic responses will persist with these two drugs but be blunted by the anti-adrenergic effect of dexmedetomidine. Aim 2: Determine the brain structures differentially engaged in memory encoding under pain and drug conditions. Task-related functional magnetic resonance imaging (MRI) activity for behavioral measures of explicit or implicit memory will be determined, comparing pain-paired vs non-pain items across drug and no-drug datasets. Functional connectivity (FC) MRI (fcMRI) will be compared between task and drug conditions. The entire brain will be explored, but predictions for key structures follow. Hypotheses: 2a) Hippocampal activity, will be blunted by propofol and dexmedetomidine, while fentanyl will have minimal effect. 2b) Amygdala activity, responsible for physiologic responses, will parallel the predictions in 1c across drug and pain conditions. 2c) Insula activity will be greater for pain-paired items, and this will be attenuated by fentanyl > dexmedetomidine > propofol, corresponding to their anticipated analgesic effect. 2d) Pain has been shown to affect fcMRI during a cognitive task, and thus FC between the key regions in 2a-c will be reduced by all three drugs, in characteristic patterns.

Tracking Information

NCT #
NCT04062123
Collaborators
National Institute of General Medical Sciences (NIGMS)
Investigators
Principal Investigator: Keith M Vogt, MD, PhD University of Pittsburgh