Recruitment

Recruitment Status
Enrolling by invitation
Estimated Enrollment
Same as current

Summary

Conditions
  • Alzheimer Disease 2 Due to Apoe4 Isoform
  • Healthy Aging
Type
Interventional
Phase
Not Applicable
Design
Allocation: N/AIntervention Model: Single Group AssignmentIntervention Model Description: Single arm, single visit, case-control study identified as an intervention due to the use of a single bout of aerobic exercise under NIH rules (https://grants.nih.gov/policy/clinical-trials/definition.htm)Masking: None (Open Label)Primary Purpose: Basic Science

Participation Requirements

Age
Between 65 years and 85 years
Gender
Both males and females

Description

The brain and cardiovascular system share common risk factors for age-related diseases such as hypertension, hypercholesterolemia, and genetics (e.g. APOE4). Because of this link, much work has focused on the role of cerebrovascular health in reducing dementia risk. Regular aerobic exercise has well...

The brain and cardiovascular system share common risk factors for age-related diseases such as hypertension, hypercholesterolemia, and genetics (e.g. APOE4). Because of this link, much work has focused on the role of cerebrovascular health in reducing dementia risk. Regular aerobic exercise has well-established benefits for cardiovascular health and has been repeatedly linked to better cognition, brain health, and lower risk of Alzheimer's disease (AD). Despite strong evidence for sustained cognitive and brain outcomes, the mechanisms relating aerobic exercise with brain health and cognition remain imprecisely defined. Amongst many potential mechanisms, cerebral blood flow (CBF) and blood-based biomarkers, such as neurotrophins, are promising targets for their shared association to brain and cardiovascular health. Prior investigations have largely attempted to measure change in these mechanisms under resting conditions after an extended exercise intervention with mixed and conflicting results. Further, studies have often not accounted for genetic differences that may blunt the effect of exercise. Unlike prior work, our innovative approach is to begin by characterizing the dynamic changes that result from an acute exercise challenge. A single bout of aerobic exercise temporarily increases CBF and prompts neurotrophin release. These transient changes ultimately drive long-term physiologic adaptation to exercise. Therefore, the study team will characterize the dynamic response to an acute, standardized bout of aerobic exercise in a group of nondemented older adults, comparing those who do and do not carry the APOE4 allele. The first aim will test if CBF response to an acute exercise challenge is blunted in APOE4 carriers. The second aim will similarly test the acute exercise response of blood-based biomarkers such as brain derived neurotrophic factor, insulin-like growth factor, and vascular endothelial growth factor in APOE4 carriers versus non-carriers. The study team expects that more accurately understanding the acute effects will provide valuable insight into how aerobic exercise supports cognitive function and brain health. Armed with this knowledge the field can optimize biomarker measurement for future exercise intervention randomized controlled trials, informing our long-term goal of identifying precision exercise prescription for AD prevention.

Tracking Information

NCT #
NCT04009629
Collaborators
National Institute on Aging (NIA)
Investigators
Principal Investigator: Eric D Vidoni, PT, PHD University of Kansas Medical Center