Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Cardiovascular Diseases
  • Chronic Kidney Diseases
  • Endothelial Dysfunction
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Crossover AssignmentMasking: Quadruple (Participant, Care Provider, Investigator, Outcomes Assessor)Primary Purpose: Basic Science

Participation Requirements

Age
Between 18 years and 125 years
Gender
Both males and females

Description

The apelins are a family of peptides whose most abundant isoform is [Pyr1]apelin-13. This binds to a single G protein coupled receptor known as 'APJ', which is widely expressed particularly in endothelium and cardiomyocytes. Apelin is the most powerful inotropic agent discovered to date, and apelin ...

The apelins are a family of peptides whose most abundant isoform is [Pyr1]apelin-13. This binds to a single G protein coupled receptor known as 'APJ', which is widely expressed particularly in endothelium and cardiomyocytes. Apelin is the most powerful inotropic agent discovered to date, and apelin infusion into healthy humans leads to endothelium-dependent vasodilatation and BP lowering. Given its vasodilatory and inotropic effects, apelin is being investigated as a novel therapy for heart failure and pulmonary arterial hypertension, both of which are features of CKD. The apelin/APJ system is widely expressed in the human kidney (endothelium, smooth muscle cells, glomeruli) with a predominance in the renal medulla. It is recognised to have a role in fluid homeostasis, and apelin infusion in rodents leads to a dose-dependent diuresis but it is difficult to discriminate how much of this is due to renal vasodilatation as opposed to a direct tubular effect. However, it has been shown that apelin counteracts the antidiuretic effect of vasopressin at the tubular level. Evidence therefore suggests that apelin could have additional cardioprotective effects in CKD and could promote natriuresis and diuresis. To date there are no clinical studies of the actions of apelin in the kidney in health or CKD, or its effect on systemic haemodynamics in CKD. Twenty-five patients with CKD and 25 matched healthy volunteers will undergo forearm blood flow studies with acetylcholine, sodium nitroprusside and apelin to determine the local haemodynamic effects of apelin in CKD, specifically the effects on endothelial function. The same subjects will then complete two renal clearance studies during systemic apelin / placebo infusion (randomised and double-blinded), by standard renal para-aminohippurate and inulin clearance techniques. Blood and urine samples will be collected every 30 minutes. This will allow the effects of apelin on renal function, renal blood flow, proteinuria, natriuresis and diuresis to be demonstrated. Cardiovascular effects will be determined by systemic bioimpedance measures and pulse wave velocity. This study aims to open a new area of clinical research with apelin.

Tracking Information

NCT #
NCT03956576
Collaborators
Kidney Cancer UK
Investigators
Principal Investigator: Neeraj Dhaun, PhD University of Edinburgh