Recruitment

Recruitment Status
Not yet recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Acute Lymphoblastic Leukemia
  • Non Hodgkin Lymphoma
Type
Interventional
Phase
Phase 1
Design
Allocation: Non-RandomizedIntervention Model: Sequential AssignmentMasking: None (Open Label)Primary Purpose: Treatment

Participation Requirements

Age
Between 1 years and 75 years
Gender
Both males and females

Description

First, a donor gave us blood to make CD19 chimeric receptor multivirus specific T cells in the laboratory. These cells are grown and frozen for the patient. To make these special T cells, they are first stimulated with proteins specific for the target 5 viruses, then grow them with stimulator cells....

First, a donor gave us blood to make CD19 chimeric receptor multivirus specific T cells in the laboratory. These cells are grown and frozen for the patient. To make these special T cells, they are first stimulated with proteins specific for the target 5 viruses, then grow them with stimulator cells. These stimulator cells are irradiated (exposed to X ray waves in the laboratory) so that they can no longer grow. The proteins help the T cells learn to see and attack cells infected with CMV, EBV, Adv, BKV and HHV-6 (the target 5 viruses). To get the CD19 antibody to attach to the surface of the T cell, the antibody gene is inserted into the T cell. This is done with a virus called a retrovirus that has been made for this study and will carry the antibody gene into the T cell. This virus also helps us find the T cells in the blood after injection. Once a sufficient number of T cells are made, they are frozen and tested to make sure they kill CD19+ tumor cells and cells infected with CMV, EBV, Adv, BKV and HHV-6 in the laboratory. The investigators will also test the cells to make sure they don't kill other normal cells in the body. Once testing is completed the cells will be ready to give to the patient. Because the patient will have received cells with a new gene in them, the patient will be followed for a total of 15 years to see if there are any long term side effects of gene transfer. Because this is what is called a dose-escalation study, the investigators will be testing 3 different doses of T cells to find out which dose is safe, and possibly beneficial. When patients enroll on this study, they will be assigned a dose of CD19 chimeric receptor multivirus specific T cells. The dose received depends on the number of patients who have been treated before the patient, and how well they tolerated the T cells. Patients will be given an injection of cells into the vein through an IV line at the assigned dose. Before they receive the injection, they may be given a dose of diphenhydramine (Benadryl) and acetaminophen (Tylenol). The injection will take about 10 minutes. The investigators will follow the patient in the clinic after the injection for up to 4 hours. Alternatively, if the patient has a high level of leukemia or lymphoma in the body, the investigators may decide to monitor the patient in the hospital after the injection. Patients will be required to remain local for at least 3 weeks after the T cell injection. This will be discussed before the treatment. The treatment will be given by the Center for Cell and Gene Therapy at Texas Children's Hospital or Houston Methodist Hospital. Medical tests before treatment- Patients will receive a series of standard medical tests including physical exam and blood tests to measure blood cells, kidney and liver function. Medical tests during and after treatment- Patients will receive standard medical tests when they are getting the infusions and after including physical exams and blood tests to measure blood cells, kidney and liver function. To learn more about the way the CD19 chimeric receptor multivirus specific T cells are working and how long they last in the body, extra blood will be drawn. This blood may be drawn from a central line (existing long-term IV) if the patient has one. On the day patients receive the cells, blood will be taken before the cells are given and 3 hours afterwards. Other blood will be drawn one week, 2 weeks, 4 weeks, 6 weeks and 8 weeks after the infusion, then at Months 3, 6, 9 and 12. Because patients have had a bone marrow transplant, the majority of these time points would require a blood draw to check the standard medical tests anyway. However, some of these time points may involve an extra trip to clinic and blood draw. Then blood will be drawn every 6 months for 4 years, then yearly for a total of 15 years (up to 30 blood collections). If patients receive the cells at a time when sensitive tests indicate relapse or a high risk of relapse, patients will have additional reviews and blood tests to monitor these tests and look for relapse. Patients will receive supportive care for acute (short) or chronic (long-term) toxicity, including blood components or antibiotics, and other intervention as appropriate.

Tracking Information

NCT #
NCT03768310
Collaborators
  • The Methodist Hospital System
  • Center for Cell and Gene Therapy, Baylor College of Medicine
Investigators
Principal Investigator: Rayne H Rouce, MD Baylor College of Medicine