Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
Colorectal Cancer
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Crossover AssignmentIntervention Model Description: The proposed study will utilize a randomized, crossover, controlled feeding trial design composed of two experimental diets: (1) animal-based, high in taurine and saturated fat (HT-HSAT) and (2) plant-based, low in both taurine and saturated fat (LT-LSAT) (each consumed for 21 days with a minimum 3-week washout between diets). At baseline and post-diet (day 22) for each of the two 3-week diets, subjects will undergo a flexible sigmoidoscopy, fasting and non-fasting blood draw, and provide a stool sample.Masking: Single (Investigator)Masking Description: All study personnel, excluding those directly involved with meal preparation, will be blinded to the subjects' diet sequence.Primary Purpose: Other

Participation Requirements

Age
Between 45 years and 75 years
Gender
Both males and females

Description

Our research is designed to determine mechanistically why consumption of a high red meat and saturated fat diet imparts risk for CRC development and to demonstrate that primary microbial risk factors (sulfidogenic and bile acid metabolizing bacteria) are modifiable by diet. The focus is on taurine, ...

Our research is designed to determine mechanistically why consumption of a high red meat and saturated fat diet imparts risk for CRC development and to demonstrate that primary microbial risk factors (sulfidogenic and bile acid metabolizing bacteria) are modifiable by diet. The focus is on taurine, an overlooked sulfur amino acid (SAA) that is abundant in red meat or provided by bacterial deconjugation of the bile salt TCA, which is increased in subjects consuming a diet high in saturated fat. Rationale for focusing the diet intervention study on AAs comes from the previously mentioned observation that a taurine respiring bacterium distinguished AA but not NHW CRC patients from healthy controls, and the previous work by PI Gaskins in AA subjects focused on mechanisms underlying the increased risk for CRC associated with consumption of a Western type diet. Our strong collection of past publications and new preliminary data support our hypothesis that dietary sources of organic sulfur increase the abundance of microbes that generate H2S through taurine metabolism and that H2S activates proinflammatory pathways and serves as a genotoxin in the colonic mucosa. We're examining, for the first time bacteria that utilize taurine, which can be provided directly from red meat or indirectly through TCA in response to saturated fat. Our study will be the first to examine the consequences of such specific dietary manipulation on genotoxic or inflammatory pathways implicated in CRC development in at-risk AAs. Our results will provide novel information regarding the in vivo interactions between diet and cancer that heretofore have not been explored in humans, particularly AAs. Food taurine content is not currently provided in either the University of Minnesota Nutrition Data System for Research (NDSR) or the USDA Standard Reference (USDA SR) nutrient databases, which are the gold standard sources for the nutrient content of food. Evidence that taurine is capable of inducing biomarkers of CRC risk through promoting growth of Sulfidogenic B. wadsworthia or other untargeted bacteria would be an important novel observation justifying the addition of this SAA to these nutrient databases. If our hypothesis is substantiated, simple vigilance of taurine intake might diminish susceptibility to CRC in all individuals, especially AAs at elevated risk. Further, if our hypothesis is upheld, it might be possible to reduce risk not only by dietary intervention but also by microbiota modification (potentially through pre-, pro- or synbiotics). Finally, if our study reveals particular modes of bacterial sulfur or bile acid metabolism correlating with epithelial proliferation or inflammation in AAs, the endpoints identified can potentially predict non-invasively elevated risk individuals who should be: a) advised on specific dietary interventions (those investigated herein); b) offered specific therapy to reduce risk; or c) counseled on regular colonoscopic screening

Tracking Information

NCT #
NCT03550885
Collaborators
  • Rush University Medical Center
  • National Cancer Institute (NCI)
Investigators
Principal Investigator: Lisa Tussing-Humphreys, PhD, MS, RD University of Illinois at Chicago Principal Investigator: Ece Mutlu, MD, MS, MBA Rush University Medical Center Principal Investigator: H. Rex Gaskins, PhD University of Illinois at Urbana-Champaign Principal Investigator: Jason Ridlon, PhD University of Illinois at Urbana-Champaign