Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Iron Deficiency
  • Valvular Heart Disease
Type
Interventional
Phase
Not Applicable
Design
Allocation: Non-RandomizedIntervention Model: Single Group AssignmentIntervention Model Description: 3 groups will be performed depending on the presence or absence of a pre-operative iron deficiency and whether they had an iron treatment preoperatively (before their inclusion in the study). However, patient management will not be different in the different groups from their inclusion in the study. Therefore we can consider that there is a single interventional group.Masking: None (Open Label)Primary Purpose: Basic Science

Participation Requirements

Age
Between 18 years and 125 years
Gender
Both males and females

Description

Iron is involved in essential functions of the body. It allows the transport of oxygen in the blood, via hemoglobin, at the muscular level, via myoglobin, and it is also involved in cellular metabolism in general, in particular for the production of ATP at the mitochondrial level, within the cytochr...

Iron is involved in essential functions of the body. It allows the transport of oxygen in the blood, via hemoglobin, at the muscular level, via myoglobin, and it is also involved in cellular metabolism in general, in particular for the production of ATP at the mitochondrial level, within the cytochromes and iron-sulfur proteins of the respiratory chain. Iron deficiency has been shown to be responsible for fatigue and muscle weakness, regardless of the presence of an anemia. Recently, iron deficiency has been identified as an important prognostic factor in heart failure patients, with a prevalence increasing with NYHA class level, and association with mortality. Iron therapy improves the symptoms of heart failure patients and the 6-minute walk test, even in the absence of anemia. The correction of iron deficiency is now proposed as one of the therapies for heart failure. However, the pathophysiology of the association between cardiac dysfunction and iron deficiency is still poorly understood. The investigators previously developed a mouse model of iron deficiency without anemia, in which the investigators observed impaired physical performances, a decrease of left ventricular ejection fraction, and a decrease in mitochondrial complex I activity. These abnormalities were normalized after iron injection. These animal data suggest that iron deficiency is responsible for left ventricular dysfunction secondary to mitochondrial I complex abnormalities, and that iron therapy corrects them. Iron deficiency is very common in the preoperative period of cardiac surgery, affecting 40 to 50% of patients. During this surgery, it is possible to perform a myocardial biopsy without risk to the patient. There is therefore an opportunity to further explore the impact of iron deficiency and its treatment on mitochondrial energy metabolism of cardiomyocytes. We hypothesize that the activity of the mitochondrial complex I is decreased in the presence of iron deficiency and that the iron treatment corrects this decrease. The purpose of this study is to verify in patients requiring valvular heart surgery, if iron deficiency is responsible for a decrease in mitochondrial complex I activity and a decrease in cardiac function during the perioperative period, and to verify whether iron treatment improves these abnormalities.

Tracking Information

NCT #
NCT03541213
Collaborators
Not Provided
Investigators
Principal Investigator: RINEAU Emmanuel, MD University Hospital