Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
300

Summary

Conditions
Spinal Cord Injury
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Crossover AssignmentIntervention Model Description: Magnetic Stimulation and Acoustic StartleMasking: Single (Participant)Masking Description: Participants will not know if they receive real or sham Stimulation and/or real or sham StartlePrimary Purpose: Treatment

Participation Requirements

Age
Between 18 years and 85 years
Gender
Both males and females

Description

Grasping behaviors, which are essential for daily-life functions, are largely impaired in individuals with cervical spinal cord injury (SCI). Although rehabilitative interventions have shown success in improving the ability to grasp following injury their overall effects remain limited. The goals of...

Grasping behaviors, which are essential for daily-life functions, are largely impaired in individuals with cervical spinal cord injury (SCI). Although rehabilitative interventions have shown success in improving the ability to grasp following injury their overall effects remain limited. The goals of this proposal are to examine the contribution of physiological pathways to the control of grasping behaviors after cervical SCI, and to maximize the recovery of grasping by using tailored non-invasive stimulation protocols with motor training. The investigators propose to study two basic grasping behaviors: a precision grip and a power grip. These behaviors are crucial because they provide the basis for a number human prehensile manipulations and are also necessary skills for eating, writing, dressing, and many other functions. Thus, the study results may have a direct impact on the quality of life for Veterans and their caregivers by enhancing their independence and level of care. In Aim 1, the investigators will investigate the contribution of corticospinal and brainstem pathways to the control of hand muscles involved in precision and power grip after cervical SCI. Transcranial magnetic stimulation (TMS) will be used to examine transmission in corticospinal and intracortical pathways targeting finger muscles and an acoustic startle stimulus with and without TMS will be used to examine the contribution from brainstem pathways. In Aim 2, the investigators propose to enhance the recovery of grasping by using novel tailored protocols of non-invasive repetitive TMS targeting late indirect (I) descending volleys (iTMS) and an acoustic startle stimuli. iTMS and startle will be used during precision and power grip movements in a task-dependent manner to induce cortical and subcortical plasticity and enhance voluntary output of hand muscles. Later, iTMS and startle will be applied in a task-dependent manner during a motor training task that involves precision and power grip. These unique approaches aim at promoting neuroplasticity during functionally relevant grasping movements has not been used before.

Tracking Information

NCT #
NCT03447509
Collaborators
Not Provided
Investigators
Principal Investigator: Monica A Perez, PhD Edward Hines Jr. VA Hospital, Hines, IL