Recruitment

Recruitment Status
Completed
Estimated Enrollment
Same as current

Summary

Conditions
Non Cystic Fibrosis Bronchiectasis
Type
Interventional
Phase
Phase 2
Design
Allocation: N/AIntervention Model: Single Group AssignmentMasking: None (Open Label)Primary Purpose: Treatment

Participation Requirements

Age
Between 18 years and 125 years
Gender
Both males and females

Description

Apart from regular chest physiotherapy and postural drainage to help clearing mucus from bronchiectatic airways, inhalational and parenteral antibiotics have also been used to reduce the bacterial load in destroyed airways, thus controlling and preventing infective exacerbations. In recent years, ac...

Apart from regular chest physiotherapy and postural drainage to help clearing mucus from bronchiectatic airways, inhalational and parenteral antibiotics have also been used to reduce the bacterial load in destroyed airways, thus controlling and preventing infective exacerbations. In recent years, accumulated evidence has suggested a central role of airway inflammation and immune dysregulation in the evolution of non-CF bronchiectasis. The classical type of airway inflammation is neutrophilic, with abundance of neutrophils in sputum, bronchoalveolar lavage fluid and bronchial biopsy from patients with non-CF bronchiectasis, even in clinically stable-state. The recruitment and trafficking of neutrophils to bronchiectatic airways are mediated via various pro-inflammatory cytokines like interleukin-1? (IL-1?), IL-8, tumour necrosis factor (TNF)-alpha and leukotriene B4 (LTB4). Investigators have also shown in an in vitro model that sputum from patients with non-CF bronchiectasis could stimulate IL-6 production from normal human bronchial epithelial cells, mediated via TNF-alpha. Recent data have suggested the involvement of Th17 immunity, in which Th17-polarized Cluster of Differentiation 4 (CD4) T cells can respond to bacteria (especially Pseudomonas aeruginosa) in bronchiectatic airways by elaboration of IL-17, leading to downstream IL-8 release from airway epithelial cells, neutrophil chemotaxis, mucus hypersecretion and formation of ectopic lymphoid follicles. This IL-17 driven pathway can further aggravate the vicious circle of key pathogenetic mechanisms in non-CF bronchiectasis. In previous studies, airway neutrophilic inflammation as indicated by sputum neutrophil count was inversely correlated with lung function (forced expiratory volume in 1 second, FEV1) and directly with duration of disease and severity (Bronchiectasis Severity Score, BSI) in stable non-CF bronchiectasis. Investigators have also demonstrated that sputum elastase, released from airway neutrophils, significantly correlated with 24-hour sputum volume, number of bronchiectatic lobes, percent predicted FEV1, and sputum leukocyte count in stable-state bronchiectasis. Patients with non-CF bronchiectasis harbouring Pseudomonas aeruginosa showed greater sputum neutrophilia and volume, with lower FEV1 and FEV1/forced vital capacity (FVC) ratio in previous studies from our group and others. This study aims to investigate the extent of airway inflammation in non-CF bronchiectasis is indicated by sputum leukocyte density (primary outcome measure), pro-inflammatory cytokines (IL-1?, IL-8, TNF-alpha, LTB4 and IL-17) and neutrophil elastase. Investigators hypothesize that 4-week treatment of roflumilast in stable-state non-CF bronchiectasis can result in: (1) reduction in sputum leukocyte density (primary hypothesis); (2) reduction in sputum pro-inflammatory cytokines (IL-1?, IL-8, TNF-alpha, and IL-17) and LTB4; (3) reduction in sputum neutrophil elastase; (4) reduction in 24-h sputum volume; (5) no change in sputum bacterial colonization, load and microbiome.

Tracking Information

NCT #
NCT03428334
Collaborators
Not Provided
Investigators
Principal Investigator: James CM Ho, MD The University of Hong Kong