Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
Cardiac Disease
Type
Interventional
Phase
Not Applicable
Design
Allocation: N/AIntervention Model: Single Group AssignmentIntervention Model Description: Each participant will receive tradition 2D Cardiac imaging as ordered per standard of care. Then, the participant will receive a 4D image, requiring 6 to 10 additional minutes in the MRI scanner. The 2D and 4D images will be interpreted by readers blinded to the results of the alternate modality. Inter- and intra-reader reliability will be assessed.Masking: None (Open Label)Primary Purpose: Diagnostic

Participation Requirements

Age
Between 18 years and 125 years
Gender
Both males and females

Description

Traditional scanning and post-processing of 2D Cardiac Magnetic Resonance images (CMRI) is highly technical and time consuming, with many exams requiring one to two hours to complete. In addition, performance of 2D scans often requires expert technologists working closely with the clinician imaging ...

Traditional scanning and post-processing of 2D Cardiac Magnetic Resonance images (CMRI) is highly technical and time consuming, with many exams requiring one to two hours to complete. In addition, performance of 2D scans often requires expert technologists working closely with the clinician imaging expert. These factors limit the general clinical utility of current generation cardiac MRI. In order to address these factors, many researchers began to explore the use of 4D image acquisition and post processing to shorten exam time. These researchers have documented success at these efforts but, to the best of the current investigators' knowledge, such advanced imaging acquisition and post-processing systems are not readily commercially available in the US. Recently GE teamed with Vios-Works for MRI to provide a cloud-based visualization platform for 4D MRI that provides quantitative and structured reporting in the post processing environment that makes use of advance MR imaging acquisition techniques. The images can be accessed by the interpreter and reviewed and manipulated in order to assess cardiac function and flow retrospectively, which, prior to this innovation, only has been available for computed tomography (CT) generated images. This investigative team hypothesizes that the use of 4D imaging will result in reduced time for acquisition (approximately 6 minutes as opposed to 1 hour), and improvement of diagnostic capability. Images will be acquired using the current standard 2D acquisition protocol for routine clinical cardiac MRI. A repeat acquisition will be completed using the new protocol for 4D imaging acquisition. This will require that patient exams be extended in length by six minutes for those enrolled in the study. The investigators will evaluate the image quality of the two techniques and grade them according to a scale of 1 to 3 with 1 being excellent cardiac borders easily identified; 2 - acceptable: cardiac borders acceptably identified; and 3, non-diagnostic. The investigators will specifically focus on the evaluation of cardiac function of both right and left ventricular function as well as flow analysis of both the aortic and pulmonic valves. For each method, technician time and MD time will be collected. The exam will go through post processing for standard 2D, following by the new 4D post processing technique. Time for post processing will be collected. All subjects who agree will receive both a 2D and a 4D MRI. The investigators will evaluate inter and intra reader reliability by having all readers read the first 15 exams, and then read them a second time after two weeks in a different order Readers showing variation in performance will be retrained on interpretation of 4D MRI before reading scans for the study. Once readers have been trained, the study will require that all 2D and 4D exams be read by two readers. The exams will be assigned randomly to readers using the Biostatistician Office random assignment services.

Tracking Information

NCT #
NCT03128268
Collaborators
  • GE Healthcare
  • Arterys, Inc.
Investigators
Principal Investigator: Michael Poon, MD Northwell Health