Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Aging
  • Diabetes Mellitus
  • Sarcopenia
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Parallel AssignmentMasking: Single (Participant)Primary Purpose: Basic Science

Participation Requirements

Age
Between 60 years and 80 years
Gender
Both males and females

Description

Sarcopenia is a major contributor to frailty and increases the risk of falls, physical dependence, disability and mortality in older adults. It advances slowly with healthy aging. However, diseases or other insults and injuries can accelerate sarcopenia and lead to catastrophic declines in mobility ...

Sarcopenia is a major contributor to frailty and increases the risk of falls, physical dependence, disability and mortality in older adults. It advances slowly with healthy aging. However, diseases or other insults and injuries can accelerate sarcopenia and lead to catastrophic declines in mobility and independence. For example, chronic diseases such as Type 2 Diabetes Mellitus (T2DM) are associated with accelerated loss of muscle mass and function in seniors; hospitalization with bed rest inactivity acutely accelerates sarcopenia. What it is not know is how concurrent diseases, inactivity or other insults and injuries accelerate sarcopenia in older adults. This knowledge gap hinders the development of innovative, targeted treatments for this disabling condition. The objective of this research is to examine the basic mechanisms that underlie accelerated sarcopenia in older adults and identify potential targets for interventions. The central hypothesis is that a global and fundamental mechanism of acute or chronic acceleration of sarcopenia is a reduction in skeletal muscle amino acid transport, which decreases muscle protein anabolism, and can be reversed by activation of the mammalian/mechanistic Target of Rapamycin Complex 1 (mTORC1) signaling with a non-amino acid stimulus, such as exercise. Amino acid transport is an active process that controls intracellular amino acid availability and the activation of protein synthesis in skeletal muscle. It is regulated by amino acid concentrations and non-amino acid stimuli that activate mTORC1 signaling, such as resistance exercise and insulin.The central hypothesis will be tested with the following specific aims: 1) Determine the effect of T2DM on the sensitivity of skeletal muscle amino acid transport to dietary amino acids. 2) Determine the effect of short-term bed rest inactivity on the sensitivity of skeletal muscle amino acid transport to dietary amino acids. 3) Determine the effect of resistance exercise on the sensitivity of amino acid transport to dietary amino acids in acute and chronic accelerated sarcopenia induced by inactivity or T2DM. Amino acid transport and protein metabolism in muscle will be measured using integrative molecular, imaging and stable isotope methodologies, identifying specific upstream regulators involved in the anabolic resistance of accelerated sarcopenia that can be targeted with novel treatments to reduce sarcopenia and improve independence in older adults.

Tracking Information

NCT #
NCT03118050
Collaborators
National Institute on Aging (NIA)
Investigators
Principal Investigator: Elena Volpi, MD, PhD UTMB