Recruitment

Recruitment Status
Active, not recruiting
Estimated Enrollment
Same as current

Summary

Conditions
Myopia
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Parallel AssignmentMasking: Single (Outcomes Assessor)Primary Purpose: Treatment

Participation Requirements

Age
Between 6 years and 11 years
Gender
Both males and females

Description

Although it is believed that myopia is the result of an interplay between genetic and environmental factors and its progression has been attributed to the lack of outdoor activities and intensive school work, myopia control methods mainly focus on optical and pharmaceutical interventions. Use of bif...

Although it is believed that myopia is the result of an interplay between genetic and environmental factors and its progression has been attributed to the lack of outdoor activities and intensive school work, myopia control methods mainly focus on optical and pharmaceutical interventions. Use of bifocal and multifocal lenses have been shown to be ineffective in myopia control. Specially designed soft contact lenses for myopia control have recently been launched, but their effectiveness has yet to be confirmed. Currently, overnight-wear orthokeratology (ortho-k), which involves reshaping the cornea by overnight wear allowing for improved, frequently unaided, vision during the day, is used extensively in Hong Kong. Approximately 50% retardation in axial length elongation was observed in studies of patients receiving ortho-k (LORIC study, 46%, ROMIO study,43%, and TO-SEE study, 52%). Pharmaceutical methods have focused on the use of atropine eye drops to slow myopic progression. The use of 1% atropine was first suggested in the 1990's, but its application was limited by the manifestation of side effects such as pupil dilatation and loss of accommodation. The effectiveness of lower concentrations (0.5%, 0.1% and 0.01%) have been evaluated in a recent five-year randomized clinical trial, where the authors reported that 0.01% atropine once daily was effective resulting in about 50% of spherical equivalent reduction. However, this was as a result of one year (3rd year) discontinuation of atropine in the five-year study. Rebound effect was minimal with 0.01% atropine and higher dosages were associated with more manifest rebound effects, which appeared to negate former myopia retardation effects. Only 24% of those receiving 0.01% progressed 0.50D or more after discontinuation for one year. By contrast, proportion of children progressed 0.50D or more in 0.5% and 0.1% groups were 59% and 68% respectively. Moreover, use of 0.01% atropine showed sustained myopia reduction with clinically negligible effects on pupil dilatation and loss of accommodation. The authors suggested the use of 0.01% as the optimum concentration for controlling myopia. The mechanisms of neither ortho-k nor atropine in myopia control are fully understood. It is believed that ortho-k and atropine act via different mechanisms, with ortho-k slowing myopia progression by reducing peripheral hyperopic defocus, while atropine exerts effects on anti-muscarinic receptors of the retina and sclera. However, some subjects respond poorly to either atropine or ortho-k, as demonstrated in clinical trials, suggesting that a single treatment may be not enough. It is possible that by combining these two methods, additional retardation of myopia progression could be achieved. In this randomized trial, we will explore the effectiveness of combination of ortho-k and atropine therapy, and evaluate additional effects by comparing the combination with ortho-k treatment alone.

Tracking Information

NCT #
NCT02955927
Collaborators
The University of Hong Kong
Investigators
Principal Investigator: Pauline Pauline, PhD The Hong Kong Polytechnic University