Recruitment

Recruitment Status
Active, not recruiting
Estimated Enrollment
46

Summary

Conditions
Spinal Cord Injury
Type
Interventional
Phase
Not Applicable
Design
Allocation: Non-RandomizedIntervention Model: Parallel AssignmentMasking: Single (Participant)Primary Purpose: Supportive Care

Participation Requirements

Age
Between 18 years and 65 years
Gender
Both males and females

Description

The goal of these studies is to enable persons paralyzed by spinal cord injury (SCI) to drive powered wheelchairs and interact with computers by acting through an interface that maximizes the effectiveness of their residual motor function. This is called a "body-machine interface" because it maps th...

The goal of these studies is to enable persons paralyzed by spinal cord injury (SCI) to drive powered wheelchairs and interact with computers by acting through an interface that maximizes the effectiveness of their residual motor function. This is called a "body-machine interface" because it maps the motions of the upper-body (arms and shoulders) to the space of device control signals in an optimal way. In this way, paralyzed persons that cannot operate a joystick controller because of lack of hand mobility can effectively use their whole upper body as virtual joystick device. An important characteristic of the proposed approach is that it is based on the possibility to control a computer or a wheelchair by bodily movements through an interactive learning process, in which the interface adapts itself to the subject's mobility and the subject learns to act through the interface. This study aims at developing and testing the customization of this interface to a group of SCI participants with tetraplegia, resulting from high-level cervical injury. The proposed research is organized in three specific aims: (Aim 1) To develop new functional capabilities in persons with spinal cord injury by customizing a body-machine interface to their individual upper body mobility. After fitting the interface to the residual movements of each subject, participants will practice computer games aimed at training two classes of control actions: operating a virtual joystick and operating a virtual keyboard. This study will test the ability of the subjects to perform skilled maneuvers with a simulated wheelchair. (Aim 2.) To test the hypothesis that practicing the upper-body control of personalized interfaces results in significant physical and psychological benefits after spinal-cord injury. A study will evaluate and quantify the impact of the practicing functional upper-body motions on the mobility of the shoulder and arms by conventional clinical methods and by measuring the subjects' ability to generate coordinated upper body movements and to apply isometric forces. Other studies under this aim will evaluate the effects of operating the body-machine interface on musculoskeletal pain and on the mood and mental state of the participants. (Aim 3) To train spinal-cord injury survivors to skillfully operate a powered wheelchair using their enhanced upper body motor skills and customized interface parameters. Finally, the last study will test the hypothesis that the skills learned through practice in the virtual environment are retained for the control of an actual powered wheelchair. After reaching stable performance in the simulated wheelchair, subjects will practice the control of the physical wheelchair in safe a testing environment. (Aim 4.) To understand how extensive practice with a body machine interface affects the cortical representation of the trained limbs. A study will evaluate and quantify the impact of the practicing functional upper-body motions on corticospinal excitability as a correlate to sensorimotor skill learning. Participants will meet the inclusion criteria for both the main study and satisfy the additional optional criteria. Participant will practice upper-body movements using the body-machine interface. The study will evaluate the evolution of corticospinal excitability in related areas of the motor cortex during the training compared to the baseline and after a follow-up period. If successful, this study will lead to effective operation of a highly customized interface that adapts to the residual motor capability of its users. Physical and psychological benefits are expected to derive from the sustained and coordinated activity associated with the use of this body-machine interface

Tracking Information

NCT #
NCT01608438
Collaborators
National Institutes of Health (NIH)
Investigators
Principal Investigator: Ferdinando A Mussa-Ivaldi, PhD Northwestern University