Recruitment

Recruitment Status
Completed

Summary

Conditions
Sarcopenia
Type
Interventional
Phase
Not Applicable
Design
Allocation: RandomizedIntervention Model: Parallel AssignmentMasking: Double (Participant, Investigator)Primary Purpose: Prevention

Participation Requirements

Age
Between 18 years and 85 years
Gender
Only males

Description

With human aging, there is a gradual but progressive decline in skeletal muscle tissue, also known as sarcopenia . Sarcopenia is accompanied by a reduced physical performance, the loss of functional capacity, increased risk of falling and increased likelihood of developing chronic metabolic diseases...

With human aging, there is a gradual but progressive decline in skeletal muscle tissue, also known as sarcopenia . Sarcopenia is accompanied by a reduced physical performance, the loss of functional capacity, increased risk of falling and increased likelihood of developing chronic metabolic diseases, such as type 2 diabetes and obesity. Eventually this also results in increased hospitalisation and institutionalization of elderly in nursing homes, and high health care costs. Therefore, it is important to investigate approaches to diminish the loss of skeletal muscle mass during aging. To preserve muscle mass, protein intake is important, because it provides the building blocks for muscle tissue: amino acids. Since basal muscle protein synthesis rates do not seem to differ between young and elderly, currently many research groups focus on postprandial muscle protein synthesis. Skeletal muscle protein synthesis has been shown to be highly dependent on protein intake. However, recent data indicate that the muscle protein synthetic response to protein intake is attenuated in the elderly. A blunted postprandial muscle protein synthetic response over a prolonged period might result in diminished muscle protein accretion and could eventually contribute to sarcopenia. The anabolic response to protein intake appears to be mainly mediated by an elevation of plasma essential amino acids. In addition, ingestion of carbohydrate leads to an attenuation of muscle protein breakdown by virtue of an elevation in plasma insulin, further promoting positive net protein balance. This is mediated by insulin's known action of increasing muscle blood flow and thereby augmenting muscle substrate delivery, which may lead to further stimulation of muscle protein synthesis. It has been shown that there is an insulin resistance with respect to muscle protein anabolism in elderly compared to young subjects during conditions of high plasma amino acid and insulin availability. This suggests that the reduced ability of insulin to augment muscle microvascular perfusion decreases the amino acid stimulus. In the present study the investigators will assess the effect of a single meal-like amount of intact protein with or without carbohydrates on post-prandial muscle protein synthesis in the elderly (70-85 y) compared to the young (18 - 30 y). Furthermore, the investigators are going to investigate whether the muscle protein synthetic response is associated with an increase in the microvascular perfusion after ingestion of the meal using Sidestream Dark Field (SDF) imaging. SDF measurements will be taken in de oral cavity underneath the tongue, since this area is easily accessible and is representative for microvascular perfusion. To be able to measure the effect of protein ingestion on muscle protein synthesis the investigators will use intrinsically labelled casein. This allows us to determine the true incorporation of amino acids from the ingested, intact casein into the muscle, taken into account the influence of digestion and absorption processes of a whole protein. Intrinsically labelled milk proteins were derived from milk that has been collected from cows that were infused with L-[1-13C] phenylalanine. The following hypotheses will be investigated: The combined intake of protein and carbohydrates augments post-prandial muscle protein synthesis in the elderly, but not in the young subjects. The increased insulin production following the combined intake of protein and carbohydrates results in an increased microvascular perfusion that is related to the post-prandial muscle protein synthetic response.

Tracking Information

NCT #
NCT01576848
Collaborators
Not Provided
Investigators
Principal Investigator: Luc JC van Loon, Prof. Maastricht University