Recruitment

Recruitment Status
Recruiting
Estimated Enrollment
Same as current

Summary

Conditions
  • Healthy Volunteers
  • Obesity
Type
Observational
Design
Observational Model: CohortTime Perspective: Prospective

Participation Requirements

Age
Between 18 years and 75 years
Gender
Both males and females

Description

Surprisingly little is understood about how the body regulates heat production (energy expenditure, EE) in response to subtle changes in environmental temperature. For example, only recently has it been realized that brown adipose tissue is functional in adult humans. It is plausible that the mechan...

Surprisingly little is understood about how the body regulates heat production (energy expenditure, EE) in response to subtle changes in environmental temperature. For example, only recently has it been realized that brown adipose tissue is functional in adult humans. It is plausible that the mechanisms governing heat production contribute to regulation of body weight and thus may be contributing to the current obesity epidemic: even small changes in EE, if not compensated by changes in food intake, can have long-term effects on body weight. The thermoneutral zone (TNZ) is the environmental temperature range over which EE is at a minimum and does not change with environmental temperature. The lower and upper critical temperatures define the temperature limits of the TNZ. At environmental temperatures below the lower critical temperature, the EE vs. environmental temperature graph is reported to be a straight line with the extrapolated X-axis intercept being the defended body temperature. Some of these parameters are predicted to be different for obese as compared to lean individuals. With the global obesity epidemic coinciding with improved indoor temperature control, a better understanding of the relationship between EE and thermoregulation is desirable. This protocol has three phases. The first is a pilot in lean males to optimize procedures and establish the feasibility, sensitivity, and behavior of the assays. Second, lean and obese male cohorts will be compared to ensure that the expected differences can be observed. Third, additional variables will be examined, such as age, race, sex, and menstrual phase in women. Specifically, we will map the resting EE response to environmental temperatures from 16-31 degrees Celsius during inpatient stays in the NIH Metabolic Clinical Research Unit. Each day resting EE will be measured in a room respiration calorimeter with a different environmental temperature (subjects will be blinded as to room temperature). The remainder of each study day will be spent at 23-25 degrees Celsius in the individual patient room. Standard diet and physical activity will be maintained and body weight will be held stable. Additionally core body and skin temperatures, heart rate and variability, muscle activity by surface electromyography, and thermal comfort and hunger using visual analog scales will be measured. This study will establish techniques and provide baseline normative data, allowing insight into the mechanisms regulating the EE in humans and how these are affected by obesity. It is envisioned that this study will provide the basis for investigation of the effects of acute and chronic weight change and the effects of drug therapy.

Tracking Information

NCT #
NCT01568671
Collaborators
Not Provided
Investigators
Principal Investigator: Kong Y Chen, Ph.D. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)