300,000+ clinical trials. Find the right one.

200 active trials for Traumatic Brain Injury

Shock, Whole Blood, and Assessment of TBI S.W.A.T. (LITES TO 2)

The LITES Network is an operational trauma center consortium which has the expertise, track record and confirmed capabilities to conduct prospective, multicenter, injury care and outcomes research of relevance to the Department of Defense (DoD). Hemorrhage and Traumatic Brain Injury (TBI) are responsible for the largest proportion of all trauma-related deaths. It is the poly-trauma patient who suffers both hemorrhagic shock and traumatic brain injury where a paucity of evidence exists to direct treatment, limiting the development of beneficial trauma practice guidelines. The use of Whole Blood (WB) for early trauma resuscitation has been touted as the 'essential next step' in the evolution of trauma resuscitation. Despite its historical and more recent use, little is known regarding WB's benefit relative to the 'current practice' ratio-based blood component therapy in the acutely bleeding patient, and even less is known regarding its effects in patients with TBI. AIM#1: Evaluate patient centered outcomes associated with early whole blood resuscitation practice as compared to component resuscitation in poly-trauma patients with hemorrhagic shock and further characterize outcome benefits in those with traumatic brain injury. AIM#2: Characterize blood pressure and resuscitation endpoints during the acute resuscitation phase of care and the associated/attributable outcomes for traumatic brain injury in patients with hemorrhagic shock. General Hypothesis #1: Whole blood resuscitation will be associated with improved mortality and resuscitation outcomes in poly-trauma patients and long term neurological outcome in those patients with traumatic brain injury as compared to those resuscitated with component therapy. General Hypothesis #2: Differences in prehospital and acute phase resuscitation systolic blood pressure will be associated with differential outcomes in patients with traumatic brain injury at discharge and at 6 months. Study Design: The LITES network will perform a multicenter, prospective, observational cohort study over a 4 year period to determine the impact of whole blood resuscitation in trauma patients with hemorrhagic shock at risk of large volume resuscitation with and without TBI. Early whole blood resuscitation will be compared to standard component resuscitation. The study will also further characterize blood pressure and resuscitation endpoints in poly-trauma patients with traumatic brain injury. Six Trauma sites with appropriate characteristics will be selected from 12 LITES Network sites across the country. Study Setting: The study will be performed utilizing busy level I trauma centers within the LITES Network located across the country, at sites where either whole blood has currently been incorporated into standard of care or where component blood transfusion is being utilized for patients in hemorrhagic shock at risk for large volume resuscitation. Study Population: The study will focus on patients who suffer blunt or penetrating injury, transported to a SWAT participating LITES trauma center with evidence of hemorrhagic shock at risk of large volume blood resuscitation.

Start: May 2018
Multimodal Neuromonitoring

Theoretical Framework & Background Cortical spreading depressions (CSD) and seizures, are crucial in the development of delayed cerebral ischemia and poor functional outcome in patients suffering from acute brain injuries such as subarachnoid hemorrhage. Multimodal neuromonitoring (MMNM) provides the unique possibility in the sedated and mechanically ventilated patients to record these electrophysiological phenomena and relate them to measures of cerebral ischemia and malperfusion. MMNM combines invasive (e.g. electrocorticography, cerebral microdialysis, brain tissue oxygenation) and noninvasive (e.g. neuroimaging, continuous EEG) techniques. Additionally, cerebral microdialysis can measure the unbound extracellular drug concentrations of sedatives, which potentially inhibit CSD and seizures in various degrees, beyond the blood-brain barrier without further interventions. Hypotheses Online multimodal neuromonitoring can accurately detect changes in neuronal metabolic demand and pathological neuronal bioelectrical changes in highly vulnerable brain tissue. Online multimodal neuromonitoring can accurately detect the impact of pathological neuronal bioelectrical changes on metabolic demand in highly vulnerable brain tissue. The occurrence and duration of pathological neuronal bioelectrical changes are dependent on sedatives and antiepileptic drug concentrations The occurrence and duration of pathological neuronal bioelectrical changes have a negative impact on functional and neurological long-term patient outcome. Simultaneous invasive and non-invasive multimodal neuromonitoring can identify a clear relationship of both methods regarding pathological neuronal bioelectrical changes and metabolic brain status. Methods Systematic analysis of MMNM measurements following standardized criteria and correlation of electrophysiological phenomena with cerebral metabolic changes in all included patients. In a second step neuroimaging, cerebral extracellular sedative drug concentrations and neurological functional outcome, will be correlated with both electrophysiologic and metabolic changes. Due to numerous high-resolution parameters, machine learning algorithms will be used to correlate comprehensive data on group and individual levels following a holistic approach. Level of originality Extensive, cutting edge diagnostic methods are used to get a better insight into the pathophysiology of electrophysiological and metabolic changes during the development of secondary brain damage. Due to the immense amount of high-resolution data, a computer-assisted evaluation will be applied to identify relationships in the development of secondary brain injury. For the first time systematic testing of several drug concentrations beyond the blood-brain barrier will be performed. With these combined methods, we will be able to develop new cerebroprotective treatment concepts on an individual basis.

Start: December 2020
Near Infra-red Spectroscopy for Detection of Intracranial Haematoma

Fall with head injury is becoming an epidemic challenge especially with the ageing population. Contributing factors for mortality and poor functional outcome included development of cerebral contusion and delayed traumatic intracerebral haematoma. There is a higher prevalence especially with the increasing use of antiplatelets and anticoagulants. Non-invasive monitoring such as near-infrared spectroscopy (NIRS) is sensitive in detecting intracranial changes. The role and efficacy of this non-invasive method has not been specifically established in patients with head injury as an initial non-operative monitoring. This is particular important in the setting of a general ward in which nursing staff is limited. The advantages of these noninvasive monitoring might have a role of continuous neuro-monitoring. They can also potentially reduce the number of unnecessary repeated CT Brain in the context of limited radiology staff and resources. Timely detection and treatment of this condition accordingly is crucial. Potential options of non-invasive monitoring such as nearinfrared spectroscopy (NIRS) is to be investigated. The aim of this study is to determine the sensitivity and specificity of NIRS as a non-invasive monitoring in detecting delayed intracranial injuries in comparison with the Gold Standard CT Brain. Study design is Prospective sensitivity and specificity study of Near Infra-red Spectroscopy (NIRS) as a non-invasive monitoring in detecting delayed intracranial injuries in comparison with the Gold Standard CT Brain in Hong Kong Chinese. Consecutive patients admitted to Prince of Wales Hospital, Hong Kong would be recruited. Outcome measures including correlation of non-invasive monitoring with near-infrared spectroscopy (NIRS) to CT Brain findings including any increase in haematoma size, cerebral edema or mass effect. Secondary outcome including 30 days mortality and functional outcome at 3 months.

Start: April 2021