300,000+ clinical trials. Find the right one.

97 active trials for Pulmonary Arterial Hypertension

Home-based Exercise Training in Patients With Pulmonary Arterial Hypertension: Effect on Skeletal Muscular Function and Metabolism

Pulmonary Arterial Hypertension has gone from a disease that causes rapid death to a more chronic condition. Yet, improved survival is associated with major challenges for clinicians as most patients remain with poor quality of life and limited exercise capacity. The effects of exercise training on exercise capacity have been largely evaluated and showed an improvement in 6-minutes walking distance (6MWD), peak V'O2. It is also known that exercise program improves quality of life. Maximal volitional and nonvolitional strength of the quadriceps are reduced in patients with Pulmonary Arterial Hypertension and correlated to exercise capacity. Moreover, on the cellular level, alterations are observed in both the respiratory as well as the peripheral muscles. Muscle fiber size has been reported to be decreased in some studies or conversely unaltered in human and animal models. Reduction in type I fibers and a more anaerobic energy metabolism has also been reported, but not in all studies. Likewise, a loss in capillary density in quadriceps of patients with Pulmonary Arterial Hypertension and rats has been reported, but could not be confirmed in other studies. While the impact of exercise training on clinical outcomes such as exercise capacity or quality of life is well known, this data highlight the fact that the underlying causes of peripheral muscle weakness as well as the mechanisms underlying the clinical improvements observed with exercise programs are not completely understood. Improvement of muscle cell metabolism in part via the enhancement of oxidative cellular metabolism and decrease in intracellular lipid accumulation may play a role in improving muscle function and exercise capacity. In this study, we intend to evaluate the impact of a 12 weeks home-based rehabilitation program on peripheral muscle function and metabolism, focusing on lipid infiltration, oxidative metabolism and epigenetic factors that can be involved in metabolic syndrome, in patients with Pulmonary Arterial Hypertension.

Start: March 2020
Stress Echo 2020 - The International Stress Echo Study

Background: Stress echocardiography (SE) has an established role in evidence-based guidelines, but recently the breadth and variety of applications has extended well beyond coronary artery disease (CAD). Purpose: To establish a prospective research study of SE applications, in and beyond CAD, also considering a variety of signs in addition to regional wall motion abnormalities. Methods: In a prospective, multicenter, international, observational study design, > 100 certified high-volume SE labs will be networked with an organized system of clinical, laboratory and imaging data collection at the time of physical or pharmacological SE, with structured follow-up information. The study is endorsed by the Italian Society of Echocardiography and organized in 10 subprojects focusing on: contractile reserve for prediction of cardiac resynchronization or medical therapy response; stress B-lines in heart failure; hypertrophic cardiomyopathy; heart failure with preserved ejection fraction; mitral regurgitation after either transcatheter or surgical aortic valve replacement; outdoor SE in extreme physiology; right ventricular contractile reserve in repaired tetralogy of Fallot; suspected or initial pulmonary arterial hypertension; coronary flow velocity, left ventricular elastance reserve and B-lines in known or suspected CAD; identification of subclinical familial disease in phenotype-negative healthy relatives of inherited disease (such as hypertrophic cardiomyopathy). Expected Results:To collect about 10,000 patients over a 5-year period (2016-2020), with sample sizes ranging from 5,000 for known or suspected CAD to around 250 for hypertrophic cardiomyopathy or repaired Fallot. This data base will allow to investigate technical questions such as feasibility and reproducibility of various SE parameters and to assess their prognostic value in different clinical scenarios. Conclusions: The study will create the cultural, informatic and scientific infrastructure connecting high-volume, accredited SE labs, to obtain original safety, feasibility, and outcome data in evidence-poor diagnostic fields, also outside the established core application of SE in CAD based on regional wall motion abnormalities. The study will standardize procedures, validate emerging signs, and integrate the new information with established knowledge, helping to build a next-generation SE lab without inner walls.

Start: November 2016