300,000+ clinical trials. Find the right one.

91 active trials for Neuroblastoma

Therapy for Children With Advanced Stage Neuroblastoma

Neuroblastoma is the most common extracranial solid tumor in childhood, with nearly 50% of patients presenting with widespread metastatic disease. The current treatment for this group of high-risk patients includes intensive multi-agent chemotherapy (induction) followed by myeloablative therapy with stem-cell rescue (consolidation) and then treatment of minimal residual disease (MRD) with isotretinoin. Recently a new standard of care was established by enhancing the treatment of MRD with the addition of a monoclonal antibody (ch14.18) which targets a tumor-associated antigen, the disialoganglioside GD2, which is uniformly expressed by neuroblasts. Despite improvement in 2-year event-free survival (EFS) of 20%, more than one-third of children with high-risk neuroblastoma (HR defined in) still cannot be cured by this approach. Therefore, novel therapeutic approaches are needed for this subset of patients. This study will be a pilot Phase II study of a unique anti-disialoganglioside (anti-GD2) monoclonal antibody (mAb) called hu14.18K322A, given with induction chemotherapy. PRIMARY OBJECTIVE: To study the efficacy [response: complete remission + partial remission (CR+PR)] to two initial courses of cyclophosphamide and topotecan combined with hu14.18K322A (4 doses/course followed by GM-CSF) in previously untreated children with high-risk neuroblastoma. To estimate the event-free survival of patients with newly diagnosed high-risk neuroblastoma treated with the addition of hu14.18K322A to treatment. SECONDARY OBJECTIVES: To study the feasibility of delivering hu14.18K322A to 6 cycles induction chemotherapy and describe the antitumor activity (CR+PR) of this 6 course induction therapy. To estimate local control and pattern of failure associated with focal intensity modulated or proton beam radiation therapy dose delivery in high-risk abdominal neuroblastoma. To describe the tolerability of four doses of hu14.18K322A with allogeneic natural killer (NK) cells from an acceptable parent, in the immediate post-transplant period [day +2 - +5 after peripheral blood stem cell (PBSC) infusion] in consenting participants. To describe the tolerability of hu14.18K322A with interleukin-2 and GM-CSF as treatment for minimal residual disease (MRD).

Start: July 2013
GD2 Specific CAR and Interleukin-15 Expressing Autologous NKT Cells to Treat Children With Neuroblastoma

This research study combines two different ways of fighting cancer: antibodies and Natural Killer T cells (NKT). Antibodies are types of proteins that protect the body from infectious diseases and possibly cancer. T cells, also called T lymphocytes, are special white blood cells that can kill other cells, including cells infected with viruses and tumor cells. Both antibodies and T cells have been used to treat patients with cancers. Investigators have found from previous research that they can put a new gene into T cells that will make them recognize cancer cells and kill them. In a previous clinical trial, investigators made artificial genes called a chimeric antigen receptors (CAR), from an antibody called 14g2a that recognizes GD2, a molecule found on almost all neuroblastoma cells (GD2-CAR). Investigators put these genes into the patients' own T cells and gave them back to patients that had neuroblastoma. NKT cells are another special subgroup of white blood cells that can specifically go into tumor tissue of neuroblastoma. Inside the tumor, there are other white blood cells called macrophages which help the cancer cells to grow and recover from injury. NKT cells can specifically kill these macrophages and slow the tumor growth. We will expand NKT cells and add GD2-specific chimeric antigen receptors to the cells. We think these cells might be better able to attack NB since they also work by destroying the macrophages that allows the tumor to grow. The chimeric antigen receptor will also contain a gene segment to make the NKT cells last longer. This gene segment is called CD28. In addition, to further improve the antitumor activity of the GINAKIT cells we added another gene expressing a molecule called Interleukin -15 (IL-15). The combination of these 3 components showed the most antitumor activity by CAR expressing NKT cells and improved these cells' survival in animal models. GD2-CAR expressing NKTs have not been tested in patients so far. The purpose of this study is to find the largest effective and safe dose of GD2-CAR NKT cells (GINAKIT cells), to evaluate their effect on the tumor and how long they can be detected in the patient's blood and what affect they have on the patient's neuroblastoma.

Start: January 2018