300,000+ clinical trials. Find the right one.

125 active trials for Glioma

Hydroxy-urea and Temozolomide in Patients With a Recurrent Malignant Brain Tumor (Glioblastoma)

Background Currently, no standard treatment exists for patients with recurrent glioblastoma multiforme (rGBM) and used 2nd line treatments have low (up to max. 20%) response rates and very modest response duration (months). The median overall survival for GBM patients is 12-14 months from the time of diagnosis; therefore the development of new therapeutic options is imperative. HU has been used to treat hematological diseases and solid tumors (such as melanoma, ovarian, squamous cell carcinoma, head and neck carcinoma and brain tumors) in combination with other anti-cancer agents, but never with TMZ. If found safe, HU+TMZ, is easily translated to the clinic. Purpose: Phase I trial to identify the maximum tolerated dose (MTD) for the combination of dose intense temozolomide (TMZ) and hydroxy-urea (HU) in (maximal) thirty patients with recurrent glioblastoma (rGBM). Plan of investigation: Month 0-24 (1st and 2nd year): Inclusion and follow-up of a maximum of 30 patients with rGBM Month 25-31 (3rd year): Follow-up of patients included in the trial, data analysis (determining MTD and explorative analysis) and manuscript preparation. Possible results: Obtaining MTD and safety profile of daily HU+TMZ in patients with rGBM; Preliminary data on the estimation of the median progression-free (PFS) and overall survival (OS), radiographic response proportion in patients with measurable disease, and exploratory correlation of treatment outcomes (PFS and OS) with o6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status in archival tumor specimens and further elucidation of underlying mechanism of re-sensitization of TMZ by HU. Exploratory analysis of biomarkers profile of platelets in patients treated with HU+TMZ.

Start: March 2018
Glioma Brain Tumours - E12513 - SensiScreen Glioma

Validation of a new platform for the molecular characterization of patients affected by glioma. The new platform includes a series of faster, less expensive real-time PCR methodologies that, in comparison to standard analyses (DS, MS-PCR), are also characterized by higher sensitivity and consequently can be able to identify mutations in ctDNA extracted from liquid biopsies as well. The development of these assays will allow the analysis of molecular markers alteration even in liquid biopsies, providing a less invasive sampling than tissue biopsies, a procedure that sometimes is characterized by side effects or that allow the collection of few tissues for the histological and molecular diagnosis. This study will not interfere with the patients routine treatment pathway and there will be no deviation from the standard of care: the molecular characterization of the tissues will be performed according to the standard diagnostic routine using the currently approved methodologies. For the retrospective study, it will be used the left-over DNA. For the cohort, that includes the collection and the subsequent analysis of liquid biopsies (prospective study), blood and CSF will be sampled during surgery. The mutations in the molecular markers will be analyzed in tissue as well as in plasma and CFS samples by the new real-time based assays. Then, the qualitative and quantitative values obtained on liquid biopsies with the new methodology will be compared to the results of the standard methodologies already obtained, for diagnostic routine, on surgical tissue samples of the same patients.

Start: October 2020