300,000+ clinical trials. Find the right one.

224 active trials for Critical Illness

Protease Activated Receptor-2 and Gastrointestinal Dysfunction in Critical Illness

Gastrointestinal (GI) dysfunction affects up to 50% of medical and surgical critically ill children. GI dysfunction, specifically gastric dysmotility and loss of epithelial barrier integrity, is associated with significant morbidity in critical illness. The mechanisms underlying GI dysfunction in critical illness are not well understood. GI dysfunction in surgery and critical illness has been associated with inflammation. There is evidence to suggest the protease-activated receptor 2 (PAR2) is a link between inflammation and GI dysfunction. PAR2 is a G-coupled receptor present throughout the GI tract. PAR2 mediates GI motility and epithelial barrier integrity. PAR2 is activated by PAR2 agonists, specifically GI serine proteases and zonulin, released under conditions of inflammation. In this study the investigators will examine the relationship between inflammation and PAR2 activation by PAR2 agonists and subsequent GI dysfunction in pediatric critically ill surgical patients. The overall hypothesis of this study is that PAR2 activation by PAR2 agonists, GI serine proteases and zonulin, released due to inflammation results in gastric dysmotility and loss of epithelial barrier integrity. In this study, the investigators will examine whether PAR2 agonist expression is increased and correlates with GI dysfunction in critically ill surgical pediatric patients. This proposal fills a knowledge gap in the understanding of mechanisms for GI dysfunction in critical illness, and will be applicable to all surgical and medical critically ill children.

Start: August 2017
Skeletal Muscle Wasting in SARS-CoV-2

The SARS-CoV-2 pandemic causes a major burden on patient and staff admitted/working on the intensive care unit (ICU). Short, and especially long admission on the ICU causes major reductions in skeletal muscle mass (3-4% a day) and strength. Since it is now possible to reduce mortality on the ICU, short and long-term morbidity should be considered another principal endpoint after SARS-CoV-2 infection. Cachexia is defined as 'a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle mass'. Its clinical features are weight loss, low albumin, anorexia, increased muscle protein breakdown and inflammation. There is strong evidence that cachexia develops rapidly in patients hospitalized for SARS-CoV-2 infection, especially on the ICU. Several mechanisms are believed to induce cachexia in SARS-CoV-2. Firstly, the virus can interact with muscle cells, by binding to the angiotensin converting enzyme 2 (ACE-2). In vitro studies have shown the virus can cause myofibrillar fragmentation into individual sarcomeres, in addition to loss of nuclear DNA in cardiomyocytes. Similar results were found during autopsies. On a cellular level, nothing is known about the effects of SARS-CoV-2 infection on skeletal muscle cells. However, up to 19.4% of patients present with myalgia and elevated levels of creatine kinases (>200U/l), suggesting skeletal muscle injury. Moreover, patients with SARS-CoV-2 infection are shown to have elevated levels of C-reactive protein and other inflammatory cytokines which can all affect skeletal muscles. The above mentioned factors are not the only mediators by which skeletal muscle mass might be affected in SARS-CoV-2. There are other known factors to affect skeletal muscle mass on the ICU, i.e. immobilization and mechanical ventilation, dietary intake (anorexia) and inflammatory cytokines. SARS-CoV-2 infection in combination with bed rest and mechanical ventilation can lead to severe muscle wasting and functional decline resulting in long-term morbidity. Until know there are no studies investigating acute skeletal muscle wasting in patients infected with SARS-CoV-2 and admitted to the ICU. As a result, there is a need of more in-depth understanding the effects of SARS-CoV-2 infection on muscle wasting. An optimal characterization of these effects may lead to improvement in morbidity and even mortality in the short and long term by the establishment of evidence-based rehabilitation programs for these patients.

Start: January 2021
UltraSound for Accurate Decisions in Chest PhysioTherapy

Introduction: Physiotherapist usually uses a clinical examination, including auscultation, an analysis of blood gasses and chest imaging to determine the indication for chest physiotherapy, to choose the treatment protocol and evaluate the efficacy of the management. Lung ultrasound (LUS) presents greater accuracy than chest X-ray in the diagnosis of lung deficiencies interesting the physiotherapist. So, it could allow the physiotherapist to determine the indication for chest physiotherapy and thus avoid unnecessary or inappropriate treatments. No study has evaluated the impact of LUS on clinical decisions in chest physiotherapy in ICU patients. Objective: To evaluate the impact of using the results of lung and diaphragm US on clinical decisions in chest physiotherapy in hypoxemic patients hospitalized in ICU. Method: The physiotherapist carries out a clinical examination and analyses the complementary tests (chest X-ray, chest CT-scan and blood gasses if available). Following the examination, he will put forward one or several hypotheses concerning the respiratory deficiency and will confirm or not the indication for chest physiotherapy. If respiratory physiotherapy is indicated, the physiotherapist will specify the protocol. A lung and diaphragm US will be done following the evaluation of the clinical physiotherapist, and will make it possible to answer the question: are the results of the lung and diaphragm US compatible with the hypotheses put forward? The LUS report will be given to the clinical physiotherapist. He will specify the respiratory physiotherapy protocol according to the results of the US-scan. The modification of the clinical decision will be assessed with the Net Reclassification Index (NRI). Expected results: We expect that decisions for chest physiotherapy will be modified by LUS. The expected benefit for patients is therefore that they will be given a chest physiotherapy protocol that is better suited to the type of respiratory deficiency they are suffering from.

Start: May 2017
COVID-19 Longitudinal Biomarkers in Lung Injury

Profile known and novel biomarkers in blood in COVID19 patients to characterize the host response to SARS-CoV-2 over time and in response to treatment. The investigators aim to: Better understand the disease. The investigators will achieve this by characterizing the biology of COVID-19 infection and the pathophysiology of the host response using clinical data together with cellular and molecular measurements over the course of the disease. This will allow better insights for the discovery and development of novel therapeutics. Understand why different patients have different phenotypes and disease presentations over time. The investigators will achieve this by analyzing for patient subgroups. This will allow targeted patient stratification and better matching of resources. Understand how patients are responding to the different medications being tested in clinical trials. The investigators will achieve that by co-enrolling with therapeutic trials. This will allow an understanding of the biological effects of these interventions. Study Design: Observational adaptive study of a translational nature, combining clinical data and basic science investigations in blood samples in the same patients, longitudinally, with serial interim analyses. Primary outcomes: 90 day ICU mortality. Secondary outcomes: measures of ICU utilization and disease severity, and 90 day in-hospital mortality. The study ends after 3 months from admission to the ICU, hospital discharge or death. Location: St. Michael's Hospital (Unity Health Toronto), an academic center in downtown Toronto affiliated with the University of Toronto. The investigators will collect: A) Detailed clinical data including investigations, mechanical ventilation and cardiovascular parameters. B) Blood samples for state-of-the-art multi-omics biomarker discovery and development: cytokines, anti-COVID19 antibodies, autoimmune serology, metabolomics, transcriptomics, epigenomics, deep immune phenotyping, viral loads. For those patients who die with COVID19 The investigators will perform bedside post-mortem biopsies of lung, heart, kidney and muscle. Sampling times: From admission to the maximal severity phase through convalescence, in order to capture the evolution and dynamics of the disease and the recovery process: days 0,1, 3, 5, 7, 10, 15 and 22, and then every 2 weeks until the end of the study (3 months from admission to the ICU, hospital discharge or death).

Start: March 2020
Neurocognitive Outcomes for ICU Patients With Acute Kidney Injury

Introduction. Initiation of acute kidney replacement therapy (KRT) is common in critically ill adults admitted to the intensive care unit (ICU), and is associated with increased morbidity and mortality. KRT has been linked to poor neurocognitive outcomes, leading to a reduced quality of life, as well as increased utilization of healthcare resources. Adults initiated on dialysis in the ICU may be particularly at risk of neurocognitive impairment, as survivors of critical illness are already predisposed to developing cerebrovascular disease and cognitive dysfunction over the long-term relative to healthy controls. Regional cerebral oxygen saturation (rSO2) may provide a critical early marker of long-term neurocognitive impairment in patients in this population. The INCOGNITO-AKI study aims to understand cerebral oxygenation in patients undergoing KRT, either continuous or intermittent, in the ICU. These findings will be correlated with long-term cognitive and functional outcomes, as well as structural brain pathology. Methods and analysis. 108 patients scheduled to undergo treatment for acute kidney injury with KRT in the Kingston Health Sciences Centre ICU will be recruited into this prospective observational study. Enrolled patients will be assessed with intradialytic cerebral oximetry using near infrared spectroscopy (NIRS). Delirium will be assessed daily with the Confusion Assessment Method-Intensive Care Unit (CAM-ICU) and delirium severity quantified as cumulative CAM-ICU-7 scores. Neurocognitive impairment will be assessed at 3- and 12-months after hospital discharge using the Kinarm and Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Structural brain pathology on MRI will also be measured at the same timepoints. Driving safety, adverse events, and medication adherence will be assessed at 12-months to evaluate the impact of neurocognitive impairment on functional outcomes. Ethics and dissemination. This study has been approved by the Queen's University Health Sciences and Affiliated Teaching Hospitals Research Ethics Board (Approval number: DMED-2424-20). Results will be presented at critical care scientific conferences and a lay summary will be provided to patients and families in their preferred format.

Start: January 2021