300,000+ clinical trials. Find the right one.

106 active trials for Congenital Heart Disease

Heart Catheterization Using Magnetic Resonance Imaging (MRI) Fluoroscopy and Passive Guidewires

Background: A heart catheterization is a diagnostic heart procedure used to measure pressures and take pictures of the blood flow through the heart chambers. Magnetic resonance imaging (MRI) fluoroscopy shows continuous pictures of the heart chambers that doctors can watch while they work. Researchers want to test this procedure with catheterization tools routinely used in x-ray catheterization called guidewires. Guidewires will help move the heart catheter through the different heart chambers. Guidewires are usually considered unsafe during MRI because MRI can cause a guidewire to heat while inside the blood vessels and heart. Researchers are testing special low energy MRI settings that allow certain guidewires to be used during MRI catheterization without heating. Using these guidewires during MRI may help to decrease the amount of time you are in the MRI scanner, and the overall time the MRI catheterization procedure takes. Objectives: To test if certain MRI settings make it safe to use a guidewire during MRI fluoroscopy. Eligibility: Adults 18 and older whose doctors have recommended right heart catheterization. Design: Researchers will screen participants by reviewing their lab results and questionnaire answers. Participants may give 4 blood samples. Participants will be sedated. They will have a tube (catheter) placed in the groin, arm, or neck if they don t already have one. Patches on the skin will monitor heart rhythm. Special antennas, covered in pads, will be placed against the body. Participants will lie flat on a table that slides in and out of the MRI scanner as it makes pictures. Participants will get earplugs for the loud knocking noise. They can talk on an intercom. They will be inside the scanner for up to 2 hours. They can ask to stop at any time. During a heart catheterization, catheters will be inserted through the tubes already in place. The catheters are guided by MRI fluoroscopy into the chambers of the heart and vessels. The guidewire will help position the catheter.

Start: August 2017
ATrial Tachycardia PAcing Therapy in Congenital Heart

Congenital heart disease (CHD) affects approximately 1% of newborns in the US, with 25% of those affected having critical conditions requiring open heart surgery within one year of birth. Surgical and medical advances have allowed many patients to live beyond their fourth and fifth decades of life. Unfortunately, cardiac arrhythmias are a relatively common sequela due to cardiac anomalies and surgical scars in addition to residual volume and pressure load on the heart. Atrial arrhythmias, including sinus node dysfunction and intra-atrial re-entrant tachycardia (IART) are among the more common abnormalities found in adults with repaired CHD. The presence of IART significantly increases morbidity and mortality, and anti-arrhythmic medications have been shown to be a sub-optimal treatment strategy with the majority of patients requiring multi-drug therapy. Catheter ablation procedures remain a treatment option, but are less successful for some patient demographics. In the mid-1990's, pacemakers with atrial anti-tachycardia pacing (ATP) capabilities were developed, primarily for the management of atrial flutter and fibrillation in adults with structurally normal hearts. Given the need for pacemakers in the CHD population to manage sinus node dysfunction and atrioventricular node conduction block, the adoption of atrial anti-tachycardia pacemakers began to gain favor. However, there is limited data available comparing the safety and effectiveness of ATP therapy between various demographics of CHD patients. In the current study, the investigators aim to determine if ATP is an effective treatment strategy for IART, specifically within particular sub-populations of CHD patients. Additionally, investigators hope to delineate any significant differences in efficacy of ATP treatment between adult and pediatric congenital heart patients. The research team will accomplish our goals with a retrospective, multi-center study in which data is collected from existing electronic medical records and pacemaker interrogations. Following data collection, the investigators will employ statistical analyses to determine if certain CHD demographics are statistically significant predictors of ATP therapy outcomes. The purpose of this prospective/retrospective study is to determine how effective atrial anti-tachycardia therapies are with the congenital heart patients who are known to have atrial arrhythmias. As this population ages, we know that arrhythmic burden increases and medications are increased or changed for symptomatic improvement. Patients will be enrolled at the time of anti tachycardia device (ATD) placement or when device therapies are turned on. Patients will need a minimum of 5 years of clinical history prior to implantation and after implantation (unless patient is very young). Data will be collected both retrospectively and prospectively. The research team will consent patients at the time of clinical evaluations and scheduled follow-ups (usually 3 - 6 months). If therapy is effective, investigators will determine the specific programming which was successful. If therapy was ineffective, investigators will also determine if a change in programing was made and if this improved ATP efficacy. Investigators will also determine the arrhythmia burden. Cardioversion and medications before and after ATD implantation will be the key determinants of arrhythmia burden in this study.

Start: September 2018
Prospective Evaluation of Programmed Ventricular Stimulation Before Pulmonary Valve Replacement in Patients With Tetralogy of Fallot

Severe pulmonary regurgitation is common in patients with Tetralogy of Fallot and results in progressive right ventricular dilatation and dysfunction. Pulmonary valve replacement is frequent in this population, and percutaneous procedures are increasing. Ventricular arrhythmias are a frequent late complication in patients with tetralogy of Fallot. The most common critical isthmus of ventricular tachycardias is between the pulmonary valve and the ventricular septal defect patch. While an electrophysiology study is sometimes performed in expert centers before surgical pulmonary valve replacement to guide a surgical ablation if needed, this approach is not recommended in current guidelines. An electrophysiology study should also be considered before percutaneous pulmonary valve replacement, as a part of the critical isthmus may be covered by the prosthetic pulmonary valve. Moreover, ablation after percutaneous pulmonary valve insertion exposes patients to the risks of traumatic valve or stent injury and infectious endocarditis. At present, reliable predictors to identify high-risk patients in whom an electrophysiology study should be performed before pulmonary valve replacement are lacking. The aim of this study is to assess prospectively the yield of systematic electrophysiology study and programmed ventricular stimulation before surgical and percutaneous pulmonary valve replacement in patients with tetralogy of Fallot.

Start: January 2020
Congenital Heart Anomaly Risk in Maternal Enteroviral Infection and Diabetes

Beyond EV-B, there are clinical observations to implicate other viruses in birth defects, including CHD. Since the Rubella epidemic of 1960s', however, viruses have received little attention and certainly no comprehensive study, especially using next generation sequencing (NGS), has been undertaken in this context. The current pandemic as well as those caused by Zika, influenza, Ebola and Lassa Fever (among many) have shown pregnant women and their baby are at high risk. Therefore, an open-minded approach is warranted when considering the role of maternal viral infections in CHD. Even less is known about maternal immune response, such as antibody production, to these viruses. The investigator's goal is to answer the above gaps in knowledge. The investigators propose to do that using two different approaches; one retrospective (analysis of samples in two existing, large biorepositories) and the other prospective. The investigator's have created a multi-disciplinary team to bring together the needed expertise from individuals who have overlapping and vested interest in this project. The investigator's specific aim is to examine the diversity of the gut virome in non-pregnant and pregnant women with and without diabetes, with special emphasis on known cardiotropic viruses (those with tropism for cardiac tissues). This study is seen by the investigator's as the first step prior to a larger prospective multi-institutional study to specifically assess the linkage between the maternal virome and CHD pathogenesis.

Start: February 2021