300,000+ clinical trials. Find the right one.

62 active trials for Cirrhosis, Liver

Rifaximin's Effect on Covert Hepatic Encephalopathy With SIBO and Gastrointestinal Dysmotility

Small Intestinal Bacterial Overgrowth (SIBO) is a common and increasingly recognized disorder in cirrhosis (30% to 73%). One of the most important predisposing factors of SIBO is small bowel dysmotility. Multiple studies have shown that the presence of SIBO is strongly linked to the pathogenesis of Minimal Hepatic Encephalopathy (MHE) also known as Covert Hepatic Encephalopathy (CHE). Consequently, altering and modulating the intestinal microbiota with ammonia-lowering agents and Rifaximin has been the target treatment strategy in CHE. The aim of this study is to determine the therapeutic effect of Rifaximin on patients with CHE and underlying SIBO while assessing the influence of Rifaximin on small bowel motility. In this prospective interventional study, 40 patients with liver cirrhosis will be screened for Covert Hepatic Encephalopathy (CHE) using neuro-psychometric tests. Patients diagnosed with CHE will undergo breath test (BT) for SIBO screening. Afterwards, wireless motility capsule (The SmartPill) will be performed in all patients with a positive BT. Thereafter, the cirrhotic patients diagnosed with CHE and SIBO will receive Rifaximin 550 mg PO twice daily for eight weeks. At the end of treatment, neuro-psychometric tests will be repeated to evaluate the therapeutic effect on CHE. In addition, BT and SmartPill will be repeated at the completion of the Rifaximin treatment period to assess the effect on small bowel motility. All collected clinical parameters at the end of the study will be compared to baseline values.

Start: July 2021
Development of 4D Flow MRI for Risk Stratification of Variceal Bleeding in Cirrhosis

The goal of this research is to validate novel non-invasive Magnetic resonance imaging (MRI) biomarkers to detect Gastroesophageal varices (GEV) in patients with cirrhosis, including fractional flow change in the portal vein and elevated azygos flow. End-stage liver disease (cirrhosis) is characterized by advanced fibrosis, liver failure, and portal hypertension. There are many causes of cirrhosis, including viral hepatitis, alcohol abuse, and perhaps most importantly, non-alcoholic fatty liver disease (NAFLD) and its aggressive subset, non-alcoholic steatohepatitis (NASH). 3 million new cases of end-stage liver disease (cirrhosis) are expected over the next decade. In cirrhosis, portosystemic collaterals that shunt blood away from the liver develop due to increased portal pressure. Gastroesophageal varices (GEV) are the most clinically relevant because they can cause fatal internal bleeding. GEV bleeding carries ~20% mortality at 6 weeks, and ~34% overall mortality. Identification of at-risk varices, prior to bleeding, is of paramount importance to initiate primary prophylaxis. To identify and treat at-risk patients, current guidelines recommend regular esophagogastroduodenoscopy (EGD) and variceal band ligation. Detection of high-risk GEV is key to initiating primary prophylaxis, which can reduce mortality by 50-70%. However, endoscopy is invasive and often unnecessary when no treatment is required. Therefore, the American Association for the Study of Liver Diseases has identified the development of "non-invasive markers that predict the presence of high-risk varices" as a major unmet need.

Start: February 2022
Leucine Enriched Essential Amino Acid Mixture to Reverse Muscle Loss in Cirrhosis

Loss of skeletal muscle mass or sarcopenia is the most common and potentially reversible complication in cirrhosis that increases morbidity and mortality before, during and after liver transplantation. No proven treatments exist for the prevention or reversal of sarcopenia in cirrhosis, primarily because the mechanisms responsible for this are unknown. Based on compelling preliminary studies and those of the co investigator, investigators hypothesize that the mechanism of reduced skeletal muscle mass in cirrhosis is due to a myostatin mediated impaired mTOR (mechanistic target of rapamycin) signaling resulting in reduced protein synthesis and increased autophagy. Investigators further postulate that leucine, a direct stimulant of mTOR, will reverse the impaired mTOR phosphorylation in the skeletal muscle of cirrhotics. The consequent increase in protein synthesis reduced autophagy will result in an increase in skeletal muscle mass. Investigators will test these hypotheses by quantifying the response to acute and long term (3 month) administration of leucine enriched essential amino acid (EAA/LEU) compared with an isonitrogenous isocaloric non-essential balanced amino acid mixture (does not stimulate protein synthesis) in cirrhotic patients. Fractional protein synthesis rate (FSR) in skeletal muscle, responses of the molecular regulatory pathways of skeletal muscle protein synthesis, and autophagy flux will be quantified in the acute and long term protocols. Tracer studies using L-[D5]-phenylalanine (Phe) as a primed constant infusion (prime 2µmol.kg-1.hr-1; constant 0.05 µmol.kg-1.hr-1) with and L [ring-D2] tyrosine, forearm plethysmography, and sequential skeletal muscle biopsies (total of 3 per study subject) will be used to quantify these outcomes. Anthropometric, clinical and body composition measures will be additional outcome measures for the long term intervention. Expression of regulatory signaling proteins, myostatin, IGF-1 (insulin like growth factor) , phospho-Akt, phospho-AMPK (activated protein kinase), phospho-mTOR and phospho-p70s6k will be quantified by Western immunoblots. Autophagy flux will be measured by quantifying expression of the autophagosome proteins.

Start: August 2013