300,000+ clinical trials. Find the right one.

57 active trials for Brain Cancer

SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet Therapies for Children and Young Adults With Recurrent Brain Tumors

Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.

Memphis, TennesseeStart: March 2018
Feasibility and Preliminary Efficacy of a Mindfulness-based Intervention for Children and Young Adults With High Grade or High-Risk Cancer and Their Caregivers

Background: People cope with cancer in different ways. Mindfulness means focusing on the present moment with an open mind. Researchers want to see if this can help children and young adults with a high-grade high-risk cancer with poor prognosis. Objective: To learn if mindfulness is feasible and acceptable for children and young people with high-grade high-risk cancer with poor prognosis and their caregivers. Eligibility: Children ages 5 24 with a high-grade or high-risk cancer, with a caregiver who agrees to do the study Must have internet access (participants may borrow an iPod for the study) Must speak English Design: All participants will complete questionnaires. These will be about feelings, physical well-being, quality of life, and mindfulness. Researchers will review children s medical records. Participants will be randomly put in the mindfulness group or the standard care group. Participants in the standard care group will: Get general recommendations for coping with cancer Have check-in sessions 1 and 3 weeks after starting. These will last about 10 minutes each. After participants finish the standard care group, they may be able to enroll in the mindfulness group. Participants in the mindfulness group will: Attend an in-person mindfulness training session. The child participant will meet with one research team member for 90 minutes while the parent participant meets with another. Then they will come together for a half hour. Practice mindfulness exercises at least 4 days a week for 8 weeks. Be asked to respond to weekly emails or texts asking about their mindfulness practice Get a mindfulness kit with things to help them do their mindfulness activities at home. Have a 30-minute check-in with their coach 1 and 3 weeks after starting. This can be in person or by video chat. All participants (from both groups) will be asked to answer follow-up questions about 8 and 16 weeks after starting the study. Participants will be paid $20 for each set of questionnaires they complete to thank them for their time. ...

Bethesda, MarylandStart: January 2019
T-DM1 Alone Versus T-DM1 and Metronomic Temozolomide in Secondary Prevention of HER2-Positive Breast Cancer Brain Metastases Following Stereotactic Radiosurgery

Background: Sometimes breast cancer spreads (metastasizes) to the brain. Researchers want to study new treatments for brain metastases. The drug Temozolomide is approved to treat brain tumors. Researchers want to see if combining it with the drug T-DMI prevents the formation of new metastases in the brain. Objective: To study if Temozolomide with T-DM1 lowers the chance of having new metastases in the brain. Eligibility: Adults at least 18 years old with a HER2-positive breast cancer that has spread to the brain and was recently treated with stereotactic radiation or surgery. Design: Participants will be screened with Medical history Physical exam Heart tests A scan (CT) that makes a picture of the body using a small amount of radiation A scan (MRI) that uses a magnetic field to make an image of the brain Blood tests. Pregnancy test. The study will be done in 3-week cycles. All participants will get T-DM1 on Day 1 of every cycle through a small plastic tube inserted in an arm vein. Some participants will also take Temozolomide capsules by mouth every day. Participants will keep a medication diary. During the study, participants will also: Repeat most of the screening tests. Answer questions about their general well-being and functioning. Participants will have lumbar puncture at least 2 times. A needle is inserted into the spinal canal low in the back and cerebrospinal fluid is collected. This will be done with local anesthesia and with the help of images. Participants will be asked to provide tumor samples when available. Participants will have a follow-up visit about 1 month after stopping the study drug. They will be contacted by telephone or email every 3 months after that.

Bethesda, MarylandStart: April 2018
Anesthesia Induced Brain Cancer Survival (ABC Survival): A Feasibility Study

Cancer is a leading cause of death worldwide. It is estimated that approximately 55,000 Canadians are surviving with brain tumors. It is projected that around 3000 persons will be diagnosed with brain and spinal cord tumors, and approximately 75 percent patients will not survive. Out of all brain cancers, high-grade gliomas [Glioblastoma Multiforme (GBM)] impose highest morbidity and mortality. Therefore, it is important to explore ways in which Investigators can improve and prolong the lives of patients suffering from brain cancers, particularly high-grade glioma, which is the most common and aggressive primary brain tumor. So far the Investigators know that the surgery, chemotherapy and radiotherapy are the three corner stones management options for these patients, and majority of the research have been conducted on these three major domains. Therefore, it is imperative to explore the other variables those may impact survival characteristics. One of the integral variables of the brain cancer surgery is anesthesia. Interestingly, the role of anesthetics was explored in some other non-brain solid organ tumor surgeries. It is observed that out of the two main types of anesthesia [one is through intravenous (propofol) and other one is gaseous (sevoflurane)], intravenous based anesthesia maintenance regime may delay the cancer progression and prolong the recurrence free period. In addition, two very large retrospective studies with approximately 11,000 and 18,000 patients respectively, showed that as compared to gaseous (volatile anesthetics) based, intravenous (propofol) based anesthesia conferred some protection against cancer progression and was also associated with lesser overall mortality. The exact nature of these protective mechanisms is not known but in animal and other laboratory-based experiments, propofol seems to inhibit cancer formation steps, delays inflammation and provide protection from cancer cell growth. This is a feasibility study for knowing various aspects of workflow; recruitment characteristics of participants and various obstacles in implying anesthesia based protocols so that the Investigators can conduct a well-designed multicenter international randomized study.

Start: October 2021