300,000+ clinical trials. Find the right one.

90 active trials for ARDS

Inhaled Aviptadil for the Treatment of COVID-19 in Patients at High Risk for ARDS

The world is currently experiencing a coronavirus (CoV-2) pandemic. A new (SARS)-CoV infection epidemic began in Wuhan, Hubei, China, in late 2019; originally called 2019- nCoV the virus is now known as SARSCoV- 2 and the disease it causes COVID-19. Previous CoV epidemics included severe acute respiratory syndrome (SARS)-CoV, which started in China in 2003 and Middle East respiratory syndrome (MERS)-CoV in the Middle East, which started in 2012. The mortality rates were >10% for SARS and >35% for MERS. The direct cause of death is generally due to ensuing severe atypical pneumonia and ensuing acute respiratory distress syndrome (ARDS). Pneumonia also is generally the cause of death for people who develop influenza, although the mortality rate is lower (1%-3% for the influenza A H5N1 pandemic of 1918-1919 in the United States). Risk factors for a poor outcome of SARS-CoV-2 infection have so far been found to include older age and co-morbidities including chronic cardiovascular and respiratory conditions and current smoking status. In May 2020, the FDA authorized the emergency use of remdesivir for treatment of COVID-19 disease based on topline date of two clinical trials, even though an underpowered clinical trial did not find significant improvement in COVID- 19 patients treated with remdesivir. Nevertheless, remdesivir is the first and so far, only approved treatment for COVID-19. Additionally further trials and clinical observations have not found a significant benefit of other antiviral drugs. Although the results of several studies are still pending, there is still a desperate need for an effective, safe treatment for COVID-19. Aviptadil, which is a synthetic form of Human Vasoactive Intestinal Polypeptide (VIP), might be beneficial in patients at risk of developing ARDS. Nonclinical studies demonstrate that VIP is highly concentrated in the lung, where it reduces inflammation.

Start: May 2021
A Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Safety and Efficacy of EB05 + SOC vs. Placebo + SOC in Adult Hospitalized Patients With COVID-19

COVID-19 patients who develop severe disease often develop acute respiratory distress syndrome (ARDS) as a result of a dysregulated immune response. This in turn stimulates a pro-inflammatory cascade ("cytokine storm") as well as emergency myelopoiesis. This proinflammatory cascade is activated when viral-mediated cell damage occurs in the lungs, resulting in the release of damage-signaling alarmin molecules such as S100A8/A9 (Calprotectin), HMGB1, Resistin, and oxidized phospholipids. These damage-associated molecular patterns (DAMPs) are recognized by the pattern recognition receptor Toll-Like Receptor 4 (TLR4) found on macrophages, dendritic cells and other innate immune cells and result in additional release of pro-inflammatory molecules. Several recent studies have shown that S100A8/A9 serum levels in hospitalized COVID-19 patients positively correlate with both neutrophil count and disease severity. Taken together the DAMP-TLR4 interaction forms a central axis in the innate immune system and is a key driver of the pathological inflammation observed in COVID-19. We hypothesis that targeting the initial step in the signalling pathways of these DAMPs in innate immunity offers the best hope for controlling the exaggerated host response to SARS-CoV-2 infection. EB05 has demonstrated safety in two clinical studies (>120 patients) and was able to block LPS-induced (TLR4 agonist) IL-6 release in humans. Given, this extensive body of evidence we believe EB05 could ameliorate ARDS due to COVID-19, significantly reducing ventilation rates and mortality.

Start: November 2020