This randomized phase III trial studies sorafenib tosylate and stereotactic body radiation therapy to see how well they work compared to sorafenib tosylate alone in treating patients with liver cancer. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Stereotactic body radiation therapy may be able to send the radiation dose directly to the tumor and cause less damage to normal tissue. Giving sorafenib tosylate together with stereotactic body radiation therapy may kill more tumor cells.
This clinical trial studies positron emission tomography (PET)-computed tomography (CT) in determining the radiation dose delivered with radioactive spheres to patients with liver metastasis or primary liver or biliary cancer. Comparing results of diagnostic procedures dose before and after delivery of radioactive spheres to the liver may help determine radioembolization dose and plan the best treatment for liver metastasis or primary liver or biliary cancer.
This clinical trial studies radiolabeled glass beads (yttrium Y 90 glass microspheres) in treating patients with unresectable hepatocellular carcinoma. Internal radiation therapy uses radioactive material placed directly into or near a tumor to kill tumor cells. Using radiolabeled glass beads to kill tumor cells may be an effective treatment for liver cancer.
The purpose of this study is to determine if sorafenib (sorafenib tosylate) is a safe and effective treatment option for preventing liver cancer in high risk patients following liver transplantation. Liver transplantation is a treatment option for liver cancer patients, but despite transplantation, the liver cancer can recur in the new, transplanted liver. It is not known whether sorafenib is effective in preventing cancer recurrence in high risk patients following liver transplantation