300,000+ clinical trials. Find the right one.

111 active trials for Acute Myocardial Infarction

Effect of Perioperative Ultrasound-guided Remote Ischemic Conditioning on Acute Myocardial Infarction

Acute myocardial infarction (AMI) is an event of myocardial necrosis caused by myocardial ischemia. Although the incidence and economic burden of AMI has declined in high-income countries, the incidence rate of AMI in China has increased dramatically over the past several decades. Initial medical therapy combined with primary percutaneous coronary intervention (PCI) is currently the most important advance in restoring coronary perfusion. Timely reperfusion therapy may halt the progress of necrosis and preserve viable tissue; however, it can also induce myocardial injury and cause cardiomyocyte death, a phenomenon called myocardial ischemia reperfusion injury (IRI), which can increase final myocardial infarct size by up to 50%. Unfortunately, there is no effective intervention for preventing IRI to date, though an improved understanding of the pathophysiology of IRI has led to the suggestion of several innovative therapeutic strategies with the potential for reducing unintended negative side effects of reperfusion therapy in AMI patients. Whether there is a therapeutic intervention that can effectively and safely reduce myocardial infarct size and cardiac mortality has been intensely explored over the years. Against this backdrop, a phenomenon called remote ischemic conditioning (RIC) has long been discussed as a potential approach to address the above issues. The purpose of present study is to investigate the efficacy of perioperative remote ischemic conditioning delivered at individual timepoints (e.g., pre-, per- and post-PCI) on myocardial injury in patients with AMI.

Nanjing, JiangsuStart: October 2021
Efficacy of an Early Phase Single Bolus r-SAK for Acute Myocardial Infarction: a Multi-center Randomized Clinical Trial

Acute myocardial infarction (AMI) is one of the leading causes of death all over the world. Even if patients with AMI survive the acute period without death, some ones would inevitably develop into chronic heart failure due to myocardial ischemia caused by segmental ventricular wall dyskinesia, myocardial remodeling, etc., which would seriously affect the prognosis of these patients. Early intensive treatment is the decisive factor to reduce the death of patients with AMI. However, the primary hospitals where patients firstly visit do not have the ability of Primary Percutaneous Transluminal Coronary Intervention (PCI) the guidelines recommend. They have to transport patients to a center that has the conditions for emergency interventional treatment. But this transportation will delay a lot of time, resulting in the extension of MI area. More importantly, the thrombus load in coronary arteries would increase with time, and the implantation of stents in vessels with a large thrombus load will often lead to slow flow or no flow, which is a relative contraindication for interventional therapy. At present, the guidelines recommend loading dose antiplatelet therapy and transport to the superior hospital for prime PCI within 2 hours if the first hospital for acute myocardial infarction does not have the conditions for emergency interventional therapy. Current guidelines recommend that thrombolytic therapy should be performed first and then transported when delivery is expected to be >2 hours to a hospital where PCI can be performed. And thrombolytic therapy is not recommended for patients who can perform PCI within <2 hours. There is a lack of clinical evidence for thrombolysis within 2 hours of first medical contact to Primary PCI. Compared with Primary PCI, early thrombolytic therapy can undoubtedly shorten the implementation time of reperfusion strategy to the maximum. For highly effective thrombolytic drugs, reperfusion time should be shortened, thrombus load should be reduced, and the size of myocardial infarction may be reduced and the prognosis of patients improved. There is a lack of clinical evidence for this. China is a developing country, whose grassroots and rural health resources are still poor. Early thrombolysis treatment plus subsequent reperfusion of interventional therapy not only conform to the Chinese characteristic, but also accord with the international research and the development direction in this field, which is worth further study. Staphylokinase (SAK) is produced by Staphylococcus aureus and it is a protein containing 136 amino acid residues. Its ability for dissolving blood clots was first discovered in 1948. Studies have shown that SAK is not directly convert plasminogen (PLG) into plasminogen (PLi), but first combines with PLG in a 1:1 ratio to form a complex. The complex can lead to the exposure of PLG active site, from single chain to double chain PLi, resulting to form an active SAK-PLI complex, which subsequently activates PLG molecules. Then PLG transforms into PLi and further dissolve the thrombus. Recombinant SAK (r-SAK) was developed in 1990 by Shanghai Institute of Plant and Biological Physiology. It is a gene recombinant drug prepared by molecular cloning of SAK gene in Escherichia coli. Its biological characteristics are very similar to natural SAK, and r-SAK is a highly fibrin-specific fibrinolysis agent. R-SAK is considered to be one of the most promising thrombolytic drugs due to its high thrombolysis activity (especially in platelet-rich arterial thrombosis), inactivation of system fibrinolysis, and few side effects. Clinical studies have shown that the efficacy of r-SAK in the treatment of AMI is better than urokinase, comparable to RT-PA, and it does not increase serious bleeding complications such as intracranial hemorrhage. In terms of pharmacokinetics, r-SAK has a fast distribution and a long action time in human body. Half-lives of distribution term is 13.30±2.06min and elimination term is 67.94±21.39min when intravenous injection 10 mg r-SAK in 30min. A single bolus of r-SAK as early as possible during the first medical contact (such as prehospital care or primary hospitals or medical centers with conditional PCI) can maximize the time window for reperfusion therapy. R-SAK, a highly effective thrombolytic drug, may shorten the reperfusion time, reduce the size of myocardial infarction and improve the prognosis of the AMI patients. The aim of this study was to investigate the efficacy of single bolus of r-SAK for thrombolytic therapy at the first contact with the patients who are diagnosed acute ST-segment elevation myocardial infarction. It is hypothesized that this therapy can open the culprit artery very early and effectively, reduce thrombus load, reduce slow flow or no flow caused by subsequent PCI, and improve myocardial tissue perfusion.

HangzhouStart: September 2021
DSS's Role in Evaluating the Diagnosis and Treatment System of Ischemic Cardiovascular and Cerebrovascular Diseases

Background: Acute ischemic cardiovascular and cerebrovascular diseases are a kind of diseases with high incidence, rapid progression, poor prognosis and high mortality and disability rate of the circulatory system, mainly including acute myocardial infarction, acute ischemic stroke and acute limb ischemia, which place a heavy burden on individuals, families and society due to their severe prognosis and high medical costs. At present, the diagnosis and treatment of ischemic cardiovascular and cerebrovascular diseases mainly focus on single organ diagnosis and treatment of target organs, lacking of indicators to comprehensively evaluate the body's pathophysiology. As ischemic disease of the circulatory system, ischemic cardiovascular and cerebrovascular diseases have common pathophysiological basis such as ischemia, hypoxia and inflammation. These common pathophysiological basis suggests that different acute ischemic cardiovascular and cerebrovascular diseases can be monitored and evaluated from an integrated perspective, it suggests the possibility of comprehensive diagnosis, evaluation and treatment guidance. At present, the "circulatory integration" therapy represented by the combined treatment of heart and brain has achieved certain results, but there is no corresponding evaluation system to provide accurate guidance. Therefore, with the concept of "circulation integration", it is an urgent problem to find the common indicators of the circulation system and construct the hierarchical diagnosis and subsequent evaluation system of acute cardiovascular and cerebrovascular integration. The development of efficient and comprehensive stratified diagnosis and prognosis evaluation system is of great significance in clinical, market and social aspects. At the early stage of the efforts our team, it was found that Dan Shen Su-(±)-3, 4-dihydroxyphenylacetic acid (DSS) could be detected in the plasma and urine of patients with acute myocardial infarction and ischemic stroke through metabolomics. It has been proved that it can be generated by the transformation of dihydroxyphenylalanine by proteus mirabilis, and its structure is consistent with the water-soluble component of salvia miltiorrhiza, which is related to the body's states of ischemia, hypoxia and inflammation. The findings provide a material basis for the "circulatory integration" assessment of acute ischemic cardiovascular and cerebrovascular diseases. Objectives: This study aims at acute ischemic cardiovascular and cerebrovascular diseases, with the concept of "circulatory integration", to build a hierarchical diagnosis and prognosis evaluation system with DSS as the core, in order to improve the diagnosis rate and cure rate, improve the prognosis and reduce mortality of ischemic cardiovascular diseases. Methods: The project included 500 patients with acute myocardial infarction, 300 patients with acute ischemic stroke, 300 patients with acute lower limb ischemia, and 200 healthy controls in the Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, Peoples R China. Plasma and urine were collected during the disease process. Various relevant clinical indicators including DSS level were included, COX model was applied to analyze the influence of multiple factors on the prognosis of the above diseases, and the indicators were screened and the integrated stratified diagnosis and prognosis evaluation system of acute ischemic cardio-cerebrovascular system with DSS as the core were established. The newly established integrated stratified diagnosis and prognosis assessment system was used to evaluate 200 patients with each of the three diseases, and the sensitivity and specificity of the new assessment system were tested. And a simple, rapid and accurate method for detecting DSS was developed.

Xi'an, ShaanxiStart: July 2020
EUROpean Intracoronary Cooling Evaluation in Patients With ST-elevation Myocardial Infarction.

In acute myocardial infarction, early restoration of epicardial and myocardial blood flow is of paramount importance to limit infarction size and create optimum conditions for favourable long-term outcome. Currently, restoration of epicardial blood flow is preferably and effectively obtained by primary percutaneous coronary intervention (PPCI). After opening the occluded artery, however, the reperfusion process itself causes damage to the myocardium, the so called "reperfusion injury". The phenomenon of reperfusion injury is incompletely understood and currently there is no established therapy for preventing it. Contributory factors are intramyocardial edema with compression of the microvasculature, oxidative stress, calcium overload, mitochondrial transition pore opening, micro embolization, neutrophil plugging and hyper contracture. This results in myocardial stunning, reperfusion arrhythmias and ongoing myocardial necrosis. There is general agreement that a large part of the cell death caused by myocardial reperfusion injury occurs during the first few minutes of reperfusion, and that early treatment is required to prevent it. Myocardial hypothermia may attenuate the pathological mechanisms mentioned above. However, limited data are available on the beneficial effects of hypothermia to protect the myocardium from reperfusion damage. In animals, several studies demonstrated a protective effect of hypothermia on the infarction area. This effect was only noted when hypothermia was established before reperfusion. Hypothermia is therefore thought to attenuate several damaging acute reperfusion processes such as oxidative stress, release of cytokines and development of interstitial or cellular edema. Furthermore, it has been shown that induced hypothermia resulted in increased ATP-preservation in the ischemic myocardium compared to normothermia. The intracoronary use of hypothermia by infused cold saline in pigs was demonstrated to be safe by Otake et al. In their study, saline of 4°C was used without complications (such as vasospasm, hemodynamic instability or bradycardia) and it even attenuated ventricular arrhythmia significantly. Studies in humans, however, have not been able to confirm this effect, which is believed to be mainly due to the fact that the therapeutic temperature could not reached before reperfusion in the majority of patients or not achieved at all. Furthermore, in these studies it was intended to induce total body hypothermia, which in turn may lead to systemic reactions such as shivering and enhanced adrenergic state often requiring sedatives, which may necessitate artificial ventilation. In fact, up to now any attempt to achieve therapeutic myocardial hypothermia in humans with myocardial infarction, is fundamentally limited because of four reasons: Inability to cool the myocardium timely, i.e. before reperfusion Inability to cool the diseased myocardium selectively Inability to achieve an adequate decrease of temperature quick enough Inability to achieve an adequate decrease of temperature large enough Consequently, every attempt to achieve effective hypothermia in ST-segment myocardial infarction in humans has been severely hampered and was inadequate. In the last two years, the investigators have developed a methodology overcoming all of the limitations mentioned above. At first, the investigators have tested that methodology in isolated beating pig hearts with coronary artery occlusion and next, the investigators have tested the safety and feasibility of this methodology in humans. Therefore, the time has come to perform a proof-of-principle study in humans, which is the subject of this protocol.

Eindhoven, North BrabantStart: January 2019
Ezetimibe Utilization Early After Acute Myocardial Infarction, "EzAMI Trial"

Rationale: Patients with acute coronary syndromes are at an increased risk for recurrent adverse coronary events, particularly during the early period following their initial presentation. Early (in-hospital) initiation of high-intensity statins reduces the risk of recurrent events and is therefore recommended by the best current practice guidelines.(1,2) However, the delayed onset of action of statin therapy and given the frequent failure of patients to achieve the recommended LDL-C targets using statins alone (as per the current practice guidelines recommendations), might be placing large number of patients at increased risk during such a vulnerable period early after an ACS.(3) More rapid and effective reduction of LDL-C levels using combination therapy from the outset may therefore be beneficial in these patients. This hypothesis has been tested with combining Evolocumab and a statin in the recent EVOPACS study, in which this combination after ACS has shown to be safe and more effective in achieving LDL-C targets at 6 weeks compared to statin monotherapy.(4) However, Evolocumab (a PCSK9i) is an expensive drug which is not affordable by many healthcare systems in low- and middle-income countries. Ezetemibe, on the other hand, is a safe and a cheap drug that can prove to be extremely cost-effective if a meaningful and timely reduction in LDL-C levels can be achieved when combined with a statin early after an ACS. Study population Patients presenting with acute myocardial infarction, with baseline LDL-C levels not likely to achieve recommended targets on statin monotherapy. This is assumed to be with LDL-C level > 125 mg/dl for those not on lipid lowering therapy; or with LDL-C > 100 mg/dl on moderate intensity statin therapy at the time of presentation. Study design Prospective randomized controlled single-blinded trial. A sample size of 500 patients, 250 in each arm, was calculated to provide a power of 0.9 and an adjusted type 1 error as 0.05. Primary outcomes Percentage of patients achieving target LDL-C levels (<70 mg/dl) at 6 weeks interval. (Efficacy endpoint) Freedom from alanine transaminase elevation (ALT) more than 3 folds upper reference limit "URL" or statin associated muscle symptoms associated with CK elevation more than 4 folds URL. (Safety endpoint) Secondary outcomes Percentage of patients achieving > 50% reduction of LDL-C and to levels below 70mg/dl at 6 weeks interval. Percentage of LDL-C reduction at 6 weeks interval. Reduction of high-sensitive C-reactive protein (hs-CRP) from baseline to 6 weeks interval. Correlating statins efficacy to reduce LDL-C and likelihood to cause statins related adverse effects to genetic alleles of ABC [ATP Binding Cassette] types A1, G5 and G8, and of CYP450 isoenzymes. MACE free survival at 1 year, (CV death; non fatal-MI; hospitalization for ACS, urgent unplanned revascularization and stroke).

AswanStart: March 2021
The Value of CT-FFR Compared to CCTA or CCTA and Stress MPI in Low to Intermediate Risk ED Patients With Toshiba CT-FFR

Coronary Computed Tomography Angiogram (CCTA) is a non-invasive imaging modality that has high sensitivity and negative predictive value for the detection of coronary artery disease (CAD). The main limitations of CCTA are its poor specificity and positive predictive value, as well as its inherent lack of physiologically relevant data on hemodynamic significance of coronary stenosis, a data that is provided either by non-invasive stress tests such as myocardial perfusion imaging (MPI) or invasively by measurement of the Fractional Flow Reserve (FFR). Recent advances in computational fluid dynamic techniques applied to standard CCTA are now emerging as powerful tools for virtual measurement of FFR from CCTA imaging (CT-FFR). These techniques correlate well with invasively measured FFR [1-4]. The primary purpose of this study is to evaluate the incremental benefit CT-FFR as compared to CCTA in triaging chest pain patients in emergency settings who are found to have obstructive CAD upon CCTA (generally >= 30% stenosis). Invasive FFR and short term clinical outcomes (90 days) will be correlated with each diagnostic modality in order to evaluate positive and negative predictive value of each. Patients will undergo a CCTA, as part of routine emergency care. If the patient consents to participate in the study, the CCTA study will be assessed by Toshiba Software, to provide a computerized FFR reading, based on the CCTA study. If the noninvasive FFR diagnosis indicates obstructive disease, the patient will undergo cardiac catheterization with invasive FFR. As CCTA utilization increases, the need to train additional imaging specialists will increase. This study will assess the capability of FFR-CT to enhance performance on both negative and positive predictive value for less experienced readers by providing feedback based on CT-FFR evaluation. If the use of CT-FFR improves accuracy of CCTA, as compared to the gold standard, (Invasive FFR), use of CT-FFR can potentially enhance performance for less experienced readers.

Manhasset, New YorkStart: April 2018