300,000+ clinical trials. Find the right one.

450 active trials for Acute Myeloid Leukemia

A Study to Compare Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations

This phase III trial compares standard chemotherapy to therapy with CPX-351 and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.

Augusta, GeorgiaStart: July 2020
Clinical Research for Azacitidine Combined With Low-dose Dasatinib in Maintenance Therapy of Acute Myeloid Leukemia

This project is a prospective, single-center study to evaluate the efficacy, safety and related mechanisms of azacitidine combined with low-dose dasatinib in maintenance therapy in patients with intermediate and high-risk acute myeloid leukemia(AML). The patients were randomly divided into azacitidine group and azacitidine combined with low-dose dasatinib group. The overall survival and disease-free survival were taken as the main end points, and the mortality and recurrence rate were taken as the secondary end points, meanwhile, the incidence of adverse events were evaluated. At the same time, the mRNA expressions of DNA methyltransferase (DNMT1, DNMT3a, DNMT3b), tumor suppressor genes (TP53, P15, P16, P21, CDH1, DOK6, SHP1, PTPN11) and differentiation genes (pu.1, C/EBP α, C/EBP β) were detected. Pyrophosphate sequencing was used to detect the methylation level of the promoter region of these tumor suppressor genes. Western Blot was used to detect apoptosis proteins (caspase3, caspase8) and phosphorylated proteins (pSTAT3, pSTAT5, pAKT). The proportion of apoptotic population of bone marrow cells was determined by flow cytometry. Therefore, the data in this study will reflect the efficacy and safety of azacitidine or azacitidine combined with low-dose dasatinib in real-world maintenance therapy in patients with medium and high-risk AML.

Lanzhou, GansuStart: October 2021
Ex-vivo Primed Memory Donor Lymphocyte Infusion to Boost Anti-viral Immunity After T-cell Depleted HSCT

HSCT from an allogeneic donor is the standard therapy for high-risk hematopoietic malignancies and a wide range of severe non-malignant diseases of the blood and immune system. The possibility of performing HSCT was significantly limited by the availability of donors compatible with the MHC system. However, modern ex-vivo and in vivo technologies for depletion of T lymphocytes have made it possible to improve the outcomes of HSCT from partially compatible related (haploidentical) donors. In representative groups, it was shown that the success of HSCT from haploidentical donors is not inferior to standard procedures of HSCT from HLA-compatible unrelated donors. HSCT from haploidentical donors in children associated with the deficit of the adaptive immune response, which persists up to 6 months after HSCT and can be an increased risk of death of the patient from opportunistic infections. To solve this problem, the method of infusion of low doses of donor memory T lymphocytes was introduced. This technology is based on the possibility of adoptive transfer of memory immune response to key viral pathogens from donor to recipient. Such infusions have been shown to be safe and to accelerate the recovery of the pathogen-specific immune response. The expansion of virus-specific T lymphocytes in the recipient's body depends on exposure to the relevant antigen in vivo. Thus, in the absence of contact with the viral antigen, the adoptive transfer of memory T lymphocytes is not accompanied in vivo by the expansion of virus-specific lymphocytes and does not form a circulating pool of memory T lymphocytes, that can protect the patient from infections. Therefore the investigators assume that ex-vivo priming of donor memory lymphocytes with relevant antigens can provide optimal antigenic stimulation and may solve the problem of restoring immunological reactivity in the early stages after HSCT. Technically ex-vivo primed memory T lymphocytes will be generated by short incubation of CD45RA-depleted fraction of the graft (a product of T lymphocyte depletion) with a pool of GMP-quality peptides representing a number of key proteins of the viral pathogens. The following are proposed as targeted antigens: CMV pp65, EBV EBNA-1, EBV LMP12A, Adeno AdV5 Hexon, BKV LT, BKV VP1. An infusion of donor memory lymphocytes will be performed on the day +1 after transplantation. Parameters of the assessment will be safety and efficacy (immune response by day 60 and stability (responses by day 180).

MoscowStart: September 2021